L’Encyclopédie/1re édition/ANALYSE

◄  ANALOGUE
ANALYSTE  ►

ANALYSE (Ordre encyclop. Entend. Raison. Philosoph. ou Science, Science de la Nature, Mathématiques pures, Arithmétique littérale, ou Algébre, Analyse.) est proprement la méthode de résoudre les problèmes mathématiques, en les réduisant à des équations. Voyez Problème & Equation.

L’Analyse, pour résoudre les problèmes, employe le secours de l’Algebre, ou calcul des grandeurs en général : aussi ces deux mots, Analyse, Algebre, sont souvent regardés comme synonymes.

L’Analyse est l’instrument ou le moyen général par lequel on a fait depuis près de deux siecles dans les Mathématiques de si belles découvertes. Elle fournit les exemples les plus parfaits de la maniere dont on doit employer l’art du raisonnement, donne à l’esprit une merveilleuse promptitude pour découvrir des choses inconnues, au moyen d’un petit nombre de données ; & en employant des signes abregés & faciles pour exprimer les idées, elle présente à l’entendement des choses, qui autrement sembleroient être hors de sa sphere. Par ce moyen les démonstrations géométriques peuvent-être singulierement abregées : une longue suite d’argumens, où l’esprit ne pourroit sans le dernier effort d’attention découvrir la liaison des idées, est convertie en des signes sensibles, & les diverses opérations qui y sont requises sont effectuées par la combinaison de ces signes. Mais ce qui est encore plus extraordinaire, c’est que par le moyen de cet art un grand nombre de vérités sont souvent exprimées par une seule ligne ; au lieu que si on suivoit la maniere ordinaire d’expliquer & de démontrer, ces vérités rempliroient des volumes entiers. Ainsi par la seule étude d’une ligne de calcul, on peut apprendre en peu de tems des sciences entieres, qui autrement pourroient à peine être apprises en plusieurs années. Voyez Mathématiques, Connoissance, , Algebre , &c.

L’Analyse est divisée, par rapport à son objet, en Analyse des quantités finies, & Analyse des quantités infinies.

Analyse des quantités finies, est ce que nous appellons autrement Arithmétique spécieuse ou Algebre. V. Algebre.

Analyse des quantités infinies, ou des infinis, appellée aussi la nouvelle Analyse, est celle qui calcule les rapports des quantités qu’on prend pour infinies, ou infiniment petites. Une de ses principales branches est la méthode des fluxions, ou le calcul différenciel. Voyez Fluxion, Infiniment petit & Différentiel

Le grand avantage des Mathématiciens modernes sur les anciens, vient principalement de l’usage qu’ils font de l’Analyse.

Les anciens Auteurs d’Analyse sont nommés par Pappus, dans la préface de son septieme livre des collections mathématiques ; savoir, Euclide, en ses Data & Porismata ; Apollonius, de Sectione Rationis, & dans ses Coniques ; Aristæus, de Locis solidis ; & Eratosthenes, de Mediis proportionalibus. Mais les anciens Auteurs d’Analyse étoient très-différens des modernes. Voyez Arithmétique.

L’Algebre appartient principalement à ceux-ci : on en peut voir l’histoire, avec ses divers Auteurs, sous l’article Algebre.

Les principaux Auteurs sur l’Analyse des infinis, sont Wallis, dans son Arithmétique des infinis ; Newton, dans son Analysis per quantitatum series, fluxiones, & differentias, & dans son excellent Traité qui a pour titre de quadraturâ curvarum : Leibnitz, act. eruditor. an. 1684. le marquis de l’Hopital, en son Analyse des infiniment petits, 1696. Carré, en sa méthode pour la mesure des surfaces, la dimension des solides, &c. par l’application du calcul intégral, 1700. G. Manfred, dans son ouvrage de constructione equationum differentialium primi gradûs, 1707. Nic. Mercator, dans sa Logarithmotechnia, 1668. Cheyne, dans sa Methodus fluxionum inversa, 1703. Craig, Methodus figurarum lineis rectis & curvis comprehensarum, quadraturas determinandi, 1685. & de quadraturis figurarum curvilinearum & locis, &c. 1693. Dav. Grégory, dans son Exercitatio geometrica de dimensione figurarum, 1684. & Nieuwentijt, dans ses Considerationes circa Analyseos ad quantitates infini è parvas applicatæ, principia, 1695.

L’Analyse démontrée du P. Reyneau de l’Oratoire, imprimée pour la premiere fois à Paris en 1708, en 2 volumes in-4o. est un livre auquel ceux qui veulent étudier cette science ne peuvent se dispenser d’avoir recours. Quoiqu’il s’y soit glissé quelques erreurs, c’est cependant jusqu’à présent l’ouvrage le plus complet que nous ayons sur l’Analyse. Il seroit à souhaiter que quelqu’habile Géometre nous donnât sur cette matiere un traité encore plus exact & plus étendu à certains égards, & moins étendu à d’autres que celui du P. Reyneau. On pourroit abreger le premier volume, qui contient sur la théorie des équations beaucoup de choses assez inutiles, & augmenter ce qui concerne le calcul intégral, en se servant pour cela des différens ouvrages qui en ont été publiés, & des morceaux répandus dans les Mémoires des Académies des Sciences de Paris, de Berlin, de Londres, & de Petersbourg, dans les Actes de Leipsic, dans les ouvrages de MM. Bernoulli, Euler, Maclaurin, &c. Voyez Calcul intégral.

Cet article Analyse est destiné au commun des lecteurs, & c’est pour cela que nous l’avons fait assez court : on trouvera à l’article Arithmétique universelle un détail plus approfondi ; & à l’article Application, on traitera de celle de l’Analyse à la Géométrie. L’article Algebre contient l’histoire de l’Analyse. (O)

Analyse, s. f. (Gram.) ce mot est Grec, ἀνάλυσις, formé d’ἀνὰ, rursùm, & de λυω, solvo, je résous. Il signifie, à proprement parler, la résolution ou le développement d’un tout en ses parties : ainsi on appelle Analyse d’un ouvrage, l’extrait de cet ouvrage, où l’on en développe les parties principales ; Analyse d’un raisonnement, l’examen qu’on fait d’un raisonnement en le partageant en plusieurs parties ou propositions, pour en découvrir plus facilement la vérité ou la fausseté. (O)

L’Analyse, s. f. en Logique, c’est ce qu’on appelle dans les écoles la méthode qu’on suit pour découvrir la vérité ; on la nomme autrement la méthode de résolution. Par cette méthode, on passe du plus composé au plus simple ; au lieu que dans la synthese, on va du plus simple au plus composé. Comme cette définition n’est pas des plus exactes, on nous permettra d’en substituer une autre. L’analyse consiste à remonter à l’origine de nos idées, à en développer la génération & à en faire différentes compositions ou décompositions pour les comparer par tous les côtés qui peuvent en montrer les rapports. L’analyse ainsi définie, il est aisé de voir qu’elle est le vrai secret des découvertes. Elle a cet avantage sur la synthese, qu’elle n’offre jamais que peu d’idées à la fois, & toûjours dans la gradation la plus simple. Elle est ennemie des principes vagues, & de tout ce qui peut être contraire à l’exactitude & à la précision. Ce n’est point avec le secours des propositions générales qu’elle cherche la vérité : mais toûjours par une espece de calcul, c’est-à-dire, en composant & décomposant les notions pour les comparer, de la maniere la plus favorable, aux découvertes qu’on a en vûe. Ce n’est pas non plus par des définitions, qui d’ordinaire ne font que multiplier les disputes : mais c’est en expliquant la génération de chaque idée. Par ce détail on voit qu’elle est la seule méthode qui puisse donner de l’évidence à nos raisonnemens ; & par conséquent la seule qu’on doive suivre dans la recherche de la vérité, & dans la maniere même d’en instruire les autres ; honneur qu’on fait ordinairement à la synthese. Il s’agit maintenant de prouver ce que nous avançons.

Tous les Philosophes, en général, conviennent qu’il faut dans l’exposition comme dans la recherche de la vérité, commencer par les idées les plus simples & les plus faciles : mais ils ne s’accordent pas sur la notion qu’ils se forment de ces idées simples & faciles. Presque tous les Philosophes, à la tête desquels on peut mettre Descartes, donnent ces noms à des idées innées, à des principes généraux, & à des notions abstraites, qu’ils regardent comme la source de nos connoissances. De ce principe, il s’ensuit nécessairement qu’il faut commencer par définir les choses, & regarder les définitions comme des principes propres à en faire découvrir les propriétés. D’autres en petit nombre, tels que Loke & Bacon, entendent par des idées simples les premieres idées particulieres qui nous viennent par sensation & par réflexion : ce sont les matériaux de nos connoissances que nous combinons selon les circonstances, pour en former des idées complexes, dont l’analyse nous découvre les rapports. Il ne faut pas les confondre avec les notions abstraites, ni avec les principes généraux des Philosophes ; ce sont au-contraire celles qui nous viennent immédiatement des sens, & à la faveur desquelles nous nous élevons ensuite par degrés à des idées plus simples ou plus composées. Je dis plus composées, parce que l’analyse ne consiste pas toûjours, comme on se l’imagine communément, à passer du plus composé au plus simple.

Il me semble que si l’on saisissoit bien le progrès des vérités, il seroit inutile de chercher des raisonnemens pour les démontrer, & que ce seroit assez de les énoncer ; car elles se suivroient dans un tel ordre, que ce que l’une ajoûteroit à celle qui l’auroit immédiatement précédée, seroit trop simple pour avoir besoin de preuve : de la sorte on arriveroit aux plus compliquées, & l’on s’en assûreroit mieux que par toute autre voie. On établiroit même une si grande subordination entre toutes les connoissances qu’on auroit acquises, qu’on pourroit à son gré aller des plus composées aux plus simples, ou des plus simples aux plus composées ; à peine pourroit-on les oublier, ou du moins, si cela arrivoit, la liaison qui seroit entr’elles faciliteroit les moyens de les retrouver.

Mais pour mieux faire sentir l’avantage de l’analyse sur la synthese, interrogeons la nature, & suivons l’ordre qu’elle indique elle-même dans l’exposition de la vérité. Si toutes nos connoissances viennent des sens, il est évident que c’est aux idées simples à préparer l’intelligence des notions abstraites. Est-il raisonnable de commencer par l’idée du possible pour venir à celle de l’existence, ou par l’idée du point pour passer à celle du solide ? Il est évident que ce n’est pas-là la marche naturelle de l’esprit humain : si les Philosophes ont de la peine à reconnoître cette vérité, c’est parce qu’ils sont dans le préjugé des idées innées, ou parce qu’ils se laissent prevenir pour un usage que le tems paroit avoir consacré.

Les Géometres mêmes, qui devroient mieux connoître les avantages de l’analyse que les autres Philosophes, donnent souvent la préférence à la synthese ; aussi, quand ils sortent de leurs calculs pour entrer dans des recherches d’une nature différente, on ne leur trouve plus la même clarté, la même précision, ni la même étendue d’esprit.

Mais si l’analyse est la méthode qu’on doit suivre dans la recherche de la vérité, elle est aussi la méthode dont on doit se servir pour exposer les découvertes qu’on a faites. N’est-il pas singulier que les Philosophes, qui sentent combien l’analyse est utile pour faire de nouvelles découvertes dans la vérité, n’aient pas recours à ce même moyen pour la faire entrer plus facilement dans l’esprit des autres ? Il semble que la meilleure maniere d’instruire les hommes, c’est de les conduire par la route qu’on a dû tenir pour s’instruire soi-même. En effet, par ce moyen, on ne paroîtroit pas tant démontrer des vérités déjà découvertes, que faire chercher & trouver des nouvelles vérités. On ne convaincroit pas seulement le Lecteur, mais encore on l’éclaireroit ; & en lui apprenant à faire des découvertes par lui-même, on lui présenteroit la vérité sous les jours les plus intéressans. Enfin, on le mettroit en état de se rendre raison de toutes ses démarches : il sauroit toûjours où il est, d’où il vient, où il va : il pourroit donc juger par lui-même de la route que son guide lui traceroit, & en prendre une plus sûre toutes les fois qu’il verroit du danger à le suivre.

Mais pour faire ici une explication de l’analyse que je viens de proposer, supposons-nous dans le cas d’acquérir pour la premiere fois les notions élémentaires des Mathématiques. Comment nous y prendrions-nous ? Nous commencerions, sans doute, par nous faire l’idée de l’unité ; & l’ajoûtant plusieurs fois à elle-même, nous en formerions des collections que nous fixerions par des lignes ; nous répeterions cette opération, & par ce moyen nous aurions bientôt sur les nombres autant d’idées complexes, que nous souhaiterions d’en avoir. Nous réfléchirions ensuite sur la maniere dont elles se sont formées ; nous en observerions les progrès, & nous apprendrions infailliblement les moyens de les décomposer. Dès-lors nous pourrions comparer les plus complexes avec les plus simples, & découvrir les propriétés des unes & des autres.

Dans cette méthode les opérations de l’esprit n’auroient pour objet que des idées simples ou des idées complexes que nous aurions formées, & dont nous connoîtrions parfaitement les générations : nous ne trouverions donc point d’obstacle à découvrir les premiers rapports des grandeurs. Ceux-là connus, nous verrions plus facilement ceux qui les suivent immédiatement, & qui ne manqueroient pas de nous en faire appercevoir d’autres ; ainsi après avoir commencé par les plus simples, nous nous éleverions insensiblement aux plus composés, & nous nous ferions une suite de connoissances qui dépendroient si fort les unes des autres, qu’on ne pourroit arriver aux plus éloignées que par celles qui les auroient précédées.

Les autres Sciences, qui sont également à la portée de l’esprit humain, n’ont pour principes que des idées simples, qui nous viennent par sensation & par réflexion. Pour en acquérir les notions complexes, nous n’avons, comme dans les Mathématiques, d’autres moyens que de réunir les idées simples en différentes collections : il y faut donc suivre le même ordre dans le progrès des idées, & apporter la même précaution dans le choix des signes.

En ne raisonnant ainsi que sur des idées simples, ou sur des idées complexes qui seront l’ouvrage de l’esprit, nous aurons deux avantages ; le premier, c’est que connoissant la génération des idées sur lesquelles nous méditerons, nous n’avancerons point que nous ne sachions où nous sommes, comment nous y sommes venus, & comment nous pourrions retourner sur nos pas : le second, c’est que dans chaque matiere nous verrons sensiblement quelles sont les bornes de nos connoissances ; car nous les trouverons lorsque les sens cesseront de nous fournir des idées, & que, par conséquent, l’esprit ne pourra plus former de notions.

Toutes les vérités se bornent aux rapports qui sont entre des idées simples, entre des idées complexes, & entre une idée simple & complexe. Par la méthode de l’analyse, on pourra éviter les erreurs où l’on tombe dans la recherche des unes & des autres.

Les idées simples ne peuvent donner lieu à aucune méprise. La cause de nos erreurs vient de ce que nous retranchons d’une idée quelque chose qui lui appartient, parce que nous n’en voyons pas toutes les parties ; ou de ce que nous lui ajoûtons quelque chose qui ne lui appartient pas, parce que notre imagination juge précipitamment qu’elle renferme ce qu’elle ne contient point. Or, nous ne pouvons rien retrancher d’une idée simple, puisque nous n’y distinguons point de parties ; & nous n’y pouvons rien ajoûter tant que nous la considérons comme simple, puisqu’elle perdroit sa simplicité.

Ce n’est que dans l’usage des notions complexes qu’on pourroit se tromper, soit en ajoûtant, soit en retranchant quelque chose mal-à-propos : mais si nous les avons faites avec les précautions que je demande, il suffira, pour éviter les méprises, d’en reprendre la génération ; car par ce moyen nous y verrons ce qu’elles renferment, & rien de plus ni de moins. Cela étant, quelques comparaisons que nous fassions des idées simples & des idées complexes, nous ne leur attribuerons jamais d’autres rapports que ceux qui leur appartiennent.

Les Philosophes ne sont des raisonnemens si obscurs & si confus, que parce qu’ils ne soupçonnent pas qu’il y ait des idées qui soient l’ouvrage de l’esprit, ou que s’ils le soupçonnent, ils sont incapables d’en découvrir la génération. Prévenus que les idées sont innées, ou que, telles qu’elles sont, elles ont été bien faites, ils croyent n’y devoir rien changer, & les prennent telles que le hasard les présente. Comme on ne peut bien analyser que les idées qu’on a soi-même formées avec ordre, leurs analyses, ou plûtôt leurs définitions, sont presque toûjours défectueuses ; ils étendent ou restreignent mal-à-propos la signification de leurs termes ; ils la changent sans s’en appercevoir, ou même ils rapportent les mots à des notions vagues, & à des entités inintelligibles. Il faut donc se faire une nouvelle combinaison d’idées ; commencer par les plus simples que les sens transmettent ; en former des notions complexes, qui, en se combinant à leur tour, en produiront d’autres, & ainsi de suite. Pourvû que nous consacrions des noms distincts à chaque collection, cette méthode ne peut manquer de nous faire éviter l’erreur. Voyez Synthese & Axiome. Voyez aussi Logique. (X)

Analyse, (Litterature.) d’un livre, d’un ouvrage, c’est un précis, un extrait fidele d’un ouvrage, tel qu’en donnent ou qu’en doivent donner les Journalistes. L’art d’une analyse impartiale consiste à bien saisir le but de l’auteur, à exposer ses principes, divisions, le progrès de sa marche, à écarter ce qui peut être étranger à son sujet, & sans lui dérober rien de ce qu’il a de bon ou d’excellent, ne pas dissimuler ses défauts. L’analyse demande de la justesse dans l’esprit pour ne pas prendre le change en appuyant sur des accessoires tandis qu’on néglige le principal. Les analyses des nouvelles de la République des Lettres de M. Bayle, & aujourd’hui celles du Journal des Savans, sont un modele d’impartialité : il seroit à souhaiter qu’on en pût dire autant de tous les Journaux. Les plaidoyers des Avocats généraux, lorsqu’ils donnent leurs conclusions, sont des analyses, dans lesquels ils résument les moyens des deux parties, exposés & débattus auparavant par leurs Avocats.

Analyse, (Litterature.) se dit encore d’une espece d’index ou table des principaux chefs ou articles d’un discours continu, disposés dans leur ordre naturel & dans la liaison & la dépendance qu’ont entr’elles les matieres. Les analyses contiennent plus de science que les tables alphabéthiques, mais sont moins en usage parce qu’elles sont moins faciles à comprendre. (G)

Analyse, est aussi en usage dans la Chimie pour dissoudre un corps composé, ou en diviser les différens principes. Voyez Principe de composition, Corps, &c.

Analyser des corps ou les résoudre en leurs parties composantes, est le principal objet de l’art chimique. Voyez Chimie. L’analyse des corps est principalement effectuée par le moyen du feu. Voyez Feu.

Tous les corps, par le moyen d’une analyse chimique, peuvent se résoudre en eau, esprit, huile, sel, & terre, quoique tous les corps ne fournissent pas tous ces principes également, mais les uns plus, les autres moins, & en différentes proportions, selon les différens corps, selon les différens genres dont ils sont. Voyez Principe.

L’analyse des animaux & celle des végétaux est aisée ; celle des minéraux, & en particulier des métaux & demi-métaux, est plus difficile. V. Animal, Végétal, & Métal.

Les différentes analyses de plantes n’ont pas réussi par rapport à aucune découverte des propriétés & vertus des plantes analysées. Les plantes les plus salutaires rendent par cette voie d’agir, à peu près les mêmes principes que les plus venimeuses ; la raison apparemment est, que l’action du feu dans la distillation change les plantes & leurs principes ; c’est pourquoi au lieu de distillation, M. Boulduc a fait ses analyses par décoction seulement. Voyez Mémoir. Acad. Roy. des Scienc. an. 1734. p. 139. hist. 63.

Quelques corps du genre des minéraux sont formés de particules si menues & si fortement unies, que leurs corpuscules ont besoin de moins de chaleur pour les emporter que pour les diviser en leurs principes, de sorte que l’analyse de tels corps est impraticable ; c’est ce qui fait la difficulté d’analyser le soufre, le mercure, &c.

La dissection anatomique d’un animal est aussi une espece d’analyse. Voyez Anatomie.

Il est du devoir d’un bon citoyen de faire connoître aux autres, autant qu’il lui est possible, les erreurs qui peuvent les séduire. L’analyse, qui est si difficile en Chimie, est aujourd’hui fort commune par la crédulité des hommes & la charlatanerie de ceux qui en abusent. Il est difficile de connoître par L’analyse la composition & les propriétés des choses ; il faut être savant & expérimenté en Chimie, pour séparer les principes qui composent les corps, & les avoir tels qu’ils y sont naturellement, afin de pouvoir dire ce qu’ils sont. Cependant on croit que tout homme de l’art, je veux dire tout homme qui tient à l’art de guérir, sait faire des analyses. On donne comme une chose possible à tout homme du métier, à faire l’analyse d’un rémede secret ou d’une eau qu’on veut connoître ; & on a la vanité de s’en charger, & le rapport qu’on en fait est une imposture. Ces faiseurs d’analyse trouvoient toûjours autrefois du nitre dans toutes les eaux, aujourd’hui c’est du sel selenite & du sel de Glauber : ils savent faire loucher de l’eau avec de la noix de galle ; ils la distillent ou la font évaporer, & ne savent pas même connoître le résidu de ces opérations, qui d’ailleurs sont insuffisantes. L’analyse des eaux est ce qu’il y a de plus difficile en Chimie, comme les expériences sur les fluides en Physique, sont en général les plus difficiles. Il faut pour pouvoir parler savamment des eaux & des principes qui les composent, être non-seulement versé dans la Chimie, mais même il faut y être très-habile. Pour connoître combien il est difficile d’analyser, & pour apprendre comment il faut s’y prendre pour analyser une eau minérale, il faut lire dans les Mémoires de l’Académie de 1726 l’analyse des eaux de Passy ; & dans les Mémoires de 1746, l’analyse de l’eau de Plombieres. (M)