Ouvrir le menu principal

Pour l’histoire de la science hellène


Pour l’histoire de la science hellène
1887



COLLECTION HISTORIQUE DES GRANDS PHILOSOPHES




POUR L’HISTOIRE

DE LA

SCIENCE HELLÈNE

PAR

Paul TANNERY





DE THALÈS À EMPÉDOCLE






PARIS
Ancienne Librairie Germer-Baillière et Cie
FÉLIX ALCAN, ÉDITEUR
BOULEVARD SAINT-GERMAIN, 108

1887



TABLE DES MATIÈRES





Pages
  
 v à vii
 1 à 17
Les quatre âges de la science antique : la période hellène, 1 ; — alexandrine, 2 ; — gréco-romaine, 5 ; — l’âge de décadence ou des commentateurs, 7. — Objet de l’ouvrage : les origines de la pensée scientifique, 8. — Méthode suivie dans l’histoire de la philosophie, 9. — Méthode à appliquer dans l’histoire de la science, 11. — Comment ces deux méthodes doivent se compléter réciproquement, 11. — Plan de l’ouvrage ; monographies ; ordre chronologique, 13. — Critique des sources : les fragments ; la tradition des doxographes grecs, 14.


CHAPITRE I
L’ouvrage historique de Théophraste, 18. — Les abrégés par noms d’auteurs et ceux par ordre de matières, 20. — Abus de l’opposition historique des doctrines, 22. — Les Placita du Ps.-Plutarque, 23. — Le premier livre des Éclogues de Stobée, 24. — Le recueil d’Aétius, restitué par Diels, 25. — Existence d’un recueil de Placita encore plus ancien, 26. — Le Ps.-Galien et Hermias, 27.


CHAPITRE II
Ératosthène et Apollodore d’Athènes, 29. — Autres autorités chronologiques de Diogène Laërce, 30. — L’époque des sept sages, 32. — L’éclipse de Thalès, 36. — La prise de Sardes par Cyrus, 39. — Xénophane et les Éléates, 41. — Anaximandre et Pythagore, 43. — Anaximène, 44. — Héraclite, Anaxagore, 47. — Empédocle, Protagoras, 48. — Démocrite, 49. — Conclusion, 50.


CHAPITRE III
 52 à 80
Thalès a emprunté à l’Égypte, non seulement ses connaissances mathématiques et astronomiques, mais aussi sa cosmologie. — Sa vie ; sa prédiction d’une éclipse de soleil ; comment on a pu arriver à prédire les éclipses sans en connaître les causes, 54. — Ce que Thalès pouvait savoir : en arithmétique, en géométrie, en astronomie ; prédictions météorologiques ; ce qu’il ignorait, 60. — Restitution du système cosmologique de Thalès ; ses autres opinions, 70.
Doxographie de Thalès, 76.


CHAPITRE IV

Anaximandre de Milet 81 à 118

I. Le savant. — Le gnomon et les cadrans solaires anciens ; la sphère céleste ; la première carte géographique, 81.

II. Le système. — Restitution de la cosmologie d’Anaximandre d’après Teichmüller ; nouveaux détails ; originalité du Milésien : ses fantaisies numériques ; points qui restent conjecturaux, 87.

III. L’infini et l’indéterminé. — Anaximandre a conçu le temps, mais non l’espace comme infini. Son concept de la matière comme continu-indéterminé, 93.

IV. Les doctrines sur l’origine du monde. — Aperçu historique les thèses de l’éternité, de la création, de l’évolution périodique, de l’entropie. Critique des deux dernières, 100.

Doxographie d’Anaximandre, 113. — Fragments. 117.

CHAPITRE V

Xénophane de Colophon 119 à 145

I. Une thèse de Pythagore. — Possibilité de déterminer indirectement certaines doctrines physiques de Pythagore. — Exemple de la respiration du vide par le monde, niée par Xénophane. — Histoire du concept de l’infini ; son affirmation par Pythagore ; sa négation par Parménide ; les tenants de l’infinitude ; le compromis d’Aristote. Position de Xénophane, 119.

II. Xénophane poète. — Sa vie et son caractère ; sa lutte contre le polythéisme, 127.

III. Xénophane physiologue. — Ses idéos sur la nature ; elles n’ont point le caractère scientifique, 131.

IV. Une erreur de Théophraste. — Méprise historique sur les opinions de Xénophane relatives à l’infinitude, 131.

Doxographie de Xénophane, 139. — Fragments, 143.

CHAPITRE VI

Anaximène 146 à 167

I. Le concept du continu. — Anaximène ne reconnaît pas la matière comme illimitée ; il donne au mot ἄπειρον le même sens qu’Anaximandre, 146.

II. Le système cosmologique. — Progrès scientifiques. Hypothèse d’astres obscurs pouf l’explication des phases et des éclipses. La sphère solide ; comparaison avec la doctrine d’Empédocle. L’ordre des planètes ; rapprochement avec Héraclite, 149.

III. L’unité de la matière. — Anaximène est le premier qui ail expressément professé l’unité de la matière. Pluralisme empirique de la science moderne : le monisme théorique est indémontrable, 158.

Doxographie d’Anaximène, 164.

CHAPITRE VII

Héraclite d’Éphèse 168 à 200

I. Le système cosmologique. — Aperçu général ; détails sur l’évolution de la genèse et de la destruction du monde, 168.

II. Héraclite théologue. — Caractère spécial et antiscientifique d’Héraclite. Son importance philosophique ; concept do logos, 171.

III. L’influence égyptienne. — Le mythe de Dionysos et de Prosymnos ; explications d’Éd. Zeller et de Teichmüller. Éléments divers des doctrines d’Héraclite ; son rôle. 173.

IV. La destinée des âmes. — Croyances égyptiennes sur ce sujet ; discussion des fragments d’Héraclite, 182.

V. La conscience du logos. — Le Dieu d’Héraclite comme conscient et personnel ; difficultés, 186.

Doxographie d’Heraclite, 190. — Fragments, 193.

CHAPITRE VIII

Hippasos et Alcméon 201 à 217

Hippasos, 201. — Les écrivains qui ont pythagorisé : Alcméon et Parménide, 203. — Doxographie d’Alcméon, 204. — Les binaires pythagoriens, 205. — Cosmologie d’Alcméon ; le double enseignement de Pythagore ; la forme des astres et l’explication des éclipses dans son école, 208. — Opinions physiologiques d’Alcméon ; la sensation, la génération, 213.

CHAPITRE IX

Parménide d’Élée 218 à 246

I. La vérité et l’opinion. — Position de Parménide ; son réalisme, d’après ses fragments ; il ébauche une théorie de la connaissance et, par là seulement, jette les fondements de l’idéalisme, 218.

II. Le dualisme physique de Parménide. — Caractère semi-pythagorien de sa physique ; les deux formes de l’être ; la genèse du monde. 225.

III. La cosmologie. — Rapprochement avec les opinions de Pythagore, de Xénophane et d’Anaximandre. Les couronnes de Parménide. Progrès scientifiques, 229.

IV. Les éléments pythagoriques du système. — L’Ananké et les personnifications mythologiques. — La théorie de la lumière ; rapprochement avec Empédocle et Philolaos, 234.

Doxographie de Parménide, 239. — Fragments, 243.

CHAPITRE X

Zénon d’Élée 247 à 261

Importance de la dialectique de Zénon d’Élée, au point de vue de l’histoire des mathématiques. Signification de sa négation de la pluralité ; elle est dirigée contre le concept du point chez les pythagoriens, 247. — Les arguments de Zénon d’après Eudème et Simplicius, 252. — Explication nouvelle des arguments contre le mouvement, 255. — Zénon reste placé sur le terrain réaliste de même que Parménide, 258. — Succès historique de ses thèses, 260.

CHAPITRE XI

Mélissos de Samos 262 à 274

Mélissos est l’auteur du monisme transcendantal généralement attribué à toute l’école éléatique. Pourquoi il a été estimé au-dessous de sa valeur ; réfutation des critiques d’Aristote, 262. — Mélissos n’a connu ni Anaxagore, ni Empédocle, ni les atomistes ; ce n’est point un physicien, 267.

Fragments de Mélissos, 271.

CHAPITRE XII

Anaxagore de Clazomène 275 à 303

I. L’homme et le savant. — Caractère d’Anaxagore ; travaux scientifiques qu’on lui attribue ; son astronomie, 275.

II. Théorie de la matière. — Distinction de la matière et de la cause du mouvement ; la matière conçue comme divisible à l’infini et sans éléments primordiaux distincts ; erreurs historiques sur cette doctrine, 280.

III. Critique de la conception d’Anaxagore. — Valeur de sa conception ; sa forme moderne, renouvelée par Kant ; comparaison avec la vraie doctrine d’Anaxagore ; nouvelle explication de plusieurs fragments, 283.

IV. Influence historique de la conception d’Anaxagore. — Rapports avec la théorie des Idées, 290. — La matière d’après Platon et d’après Aristote, 292.

Doxographie d’Anaxagore, 295. — Fragments, 301.

CHAPITRE XIII

Empédocle d’Agrigente 304 à 339

I. Les milieux fluides. — L’Amour et la Haine d’Empédocle sont des éléments étendus ; origine de leur conception, 304. — Forces reconnues implicitement par Empédocle en dehors de ces éléments : l’attraction des semblables ; la loi du déplacement réciproque des milieux, 307. — Restitution de la cosmogonie d’Empédocle ; éclectisme de ses conceptions, 311.

II. La cosmologie. — Détails du système ; caractère de la doctrine des quatre éléments, 316.

Doxographie d’Empédocle, 320. — Fragments, 328.

APPENDICES

I. Théophraste, sur les Sensations 341 à 368

Traduction du fragment, relatif aux sensations, de l’ouvrage historique de Théophraste sur les Opinions des Physiciens. — Les sens : opinions de Parménide, Empédocle, Platon, Alcméon, Anaxagore, Clidème, Diogène d’Apollonie. — Les objets sensibles : opinions de Démocrite et de Platon (Timée).

II. Sur l’Arithmétique pythagorienne 369 à 391

Comment l’arithmétique apparaît dans Euclide, 369. — Nicomaque, Théon de Smyrne, 370. — Iamblique, 372. — Les Théologoumènes, 373. — Le fragment de Speusippe sur les nombres pythagoriques, 374. — Plan de l’arithmétique pythagorienne depuis Speusippe ; question de l’origine des spéculations mystiques sur les nombres de la décade, 375. — Anciens pythagoriens cités sur ce sujet, 377. — Citations d’un caractère scientifique sur l’arithmétique, 380. — Thymaridas ; époque où il vivait ; c’est le seul pythagorien dont on puisse dire qu’il ait vraiment traité de l’arithmétique, 382. — Les épanthèmes de l’arithmétique, dans Iamblique, 386. — Traduction du fragment de Speusippe et notes explicatives, 386.

Table des Matières 393 à 396




Bordeaux. — Imprimerie G. GOUNOUILHOU, rue Guiraude. 11.