Mathématiques et mathématiciens/Chp 2 - Section : Histoire

Librairie Nony & Cie (p. 270-296).


HISTOIRE



LE TRIBUNAL DES MATHÉMATIQUES

Les instruments dont le tribunal des mathématiques fait actuellement usage, pour rédiger l’almanach présenté à S. M. Kouang-Siu et désigner les jours fastes ou néfastes, ont été construits en 1670, sous la direction du Père Verbiest, missionnaire belge. Ils ne permettent qu’une précision de dix minutes de degré tandis que nous pouvons évaluer à l’aide des nôtres jusqu’aux dixièmes de seconde, d’où une précision six mille fois plus grande. On ne s’occupe guère à Pékin que de calendrier et d’astrologie et on est porté à y croire la Terre toujours immobile au centre de l’espace céleste.

Nous avons tenu entre les mains une table de sinus de l’empereur de Chine, Kang-Hi. Le texte, imprimé en Europe, est précédé de 4 feuillets (8 pages), contenant des chiffres arabes et chinois tracés à l’encre de Chine. Chaque page imprimée des tables de sinus et tangentes est précédée et suivie de caractères chinois tracés au pinceau rouge. D’après une note ancienne qui se lit sur la garde et dont voici le texte, ces caractères seraient tracés par l’empereur lui-même : « L’empereur Kang-Hi se servit de ce livre lorsqu’il calculait à l’européenne. Les caractères rouges sont de sa main. »

UNE CALOMNIE

Sous prétexte de mesurer un degré du méridien, si bien déterminé par les Anciens, ils (les charlatans académiques) se sont fait accorder par le ministre 100 000 écus pour les frais de l’opération, petit gâteau qu’ils se partageront en frères.

Marat, l’ami du peuple.
DODÉCAÈDRE

Les doctrines mathématiques des pythagoriciens devaient être tenues secrètes. Un des initiés (leur signe de reconnaissance était le pentagone étoilé), nommé Hippasos, ayant dévoilé la construction du dodécaèdre inscrit dans la sphère, fut noyé en mer.

JARDINIERS, QUINCAILLIERS, ETC.

Le duc d’Argyle, ayant trouvé les Principia de Newton sur une pelouse de son château, interrogea le jardinier Stone : cet homme de trente ans avait appris seul les éléments de mathématiques, le latin et il comprenait Newton ! Dans la suite, Stone a composé un traité de calcul différentiel, qu’on a traduit en français pour compléter celui de de l’Hôpital.

Aux États-Unis, le commis quincaillier Bowdwitch, parvint aussi seul à lire Newton. Après s’être enrichi à Boston, dans une compagnie d’assurances, il publia à ses frais sa traduction de la Mécanique céleste de Laplace, augmentée de commentaires.

Éléazar Féronce vivait vers 1625, aux environs de Grenoble ; il était jardinier dans un château ; il faisait des observations à l’aide d’instruments qu’il se construisait lui-même.

Le cordonnier hollandais, Théodore Rembrandsz, né vers 1610, publia un ouvrage étendu sur le système de Copernic.

Un ouvrier pelletier-fourreur, Jean Jordan, de Stuttgard, fut un mathématicien et un mécanicien ingénieux.

Un tisserand de Lisieux, nommé Jean Lefèvre, était assez fort mathématicien pour calculer une table des passages de la lune au méridien. On l’attacha au bureau de la Connaissance des temps.

Vers 1710, un berger d’Écosse, Jacques Fergusson s’était construit en bois des instruments d’astronomie ; il s’adonna aux mathématiques et devint membre de la Société royale de Londres.

Le cultivateur saxon, Jean-Georges Palitzch, né en 1723, mathématicien et astronome, correspondant de la Société royale de Londres, employait ses loisirs à étudier ; il n’abandonna jamais le métier de laboureur.

L’astronome Jean-Louis Pons, né en 1761, d’abord concierge à l’Observatoire de Marseille, a découvert 37 comètes.

Un simple cordonnier, Rigaut, qui s’était instruit seul, a présenté à l’Académie des sciences de bons mémoires de mathématiques

MATHÉMATICIENNES

Sous le titre de Les femmes dans la Science, nous venons de publier, chez l’éditeur Nony, un volume de 350 pages, orné de portraits et d’autographes. Voici un extrait de l’avant-propos.

« Depuis plus de quinze siècles, nous honorons Hypatie, cette Grecque d’Alexandrie, si belle et si savante, lapidée par une populace stupide. Les travaux d’astronomie et de mécanique de la marquise du Châtelet défendent sa mémoire. Marie Agnesi, après avoir enseigné le calcul infinitésimal à l’Italie, est morte comme une sainte. À l’occasion d’un problème posé par Napoléon, Sophie Germain a créé, une des premières, la physique mathématique. Mary Somerville a composé, après Laplace, une mécanique céleste. Une russe, Mme Kowalevski, couronnée par notre Académie des Sciences, a été enlevée, il y a quelques années, en pleine floraison de son génie.

Nous avons réuni, pour la première fois, ces belles et nobles figures. Nous avons tracé, de ces femmes hors pair et de quelques autres, des notices à grands traits, sans détails techniques. Le groupe d’élite a été encadré dans un tableau assez complet des autres savantes : l’armée en marche, avec son état-major.

Nous avons surtout étudié les savantes professionnelles, qui ont consacré aux études scientifiques la plus grande partie de leur vie, mathématiciennes, physiciennes, naturalistes et philosophes. Puis sont venues les simples curieuses qui, à l’occasion, ont dit leur mot sur les sciences ; les collaboratrices qui ont aidé les savants, discrètement et activement ; les professeurs, les vulgarisatrices, modestes et utiles ; enfin les protectrices, princesses ou riches bourgeoises, qui ont fondé des prix dans les académies ou répandu leurs bienfaits sous d’autres formes. Les unes et les autres, par des moyens divers, ont exercé une heureuse influence sur le progrès des sciences.

Deux notes, provenant d’une collaboration variée, terminent le livre. Dans l’une, nous avons réuni des opinions opposées sur cette question : Si la femme est capable de science. La seconde note est formée de Menus propos sur les femmes et les sciences, aperçus divers, citations, anecdotes, pensées, etc. »

SONS

Ayant remarqué, un jour qu’il passait devant un atelier de forgerons, que les sons des marteaux formaient la quarte, la quinte et l’octave, Pythagore eut l’idée de peser les trois marteaux et, des rapports de leur poids, il conclut une théorie mathématique de l’harmonie des sons.

On sait que le même philosophe a, dit-on, composé la table qui fait le désespoir des petits enfants, et, ce qui est plus important, qu’il a découvert le carré de l’hypoténuse. À l’occasion de cette admirable proposition, Pythagore a sacrifié une hécatombe aux dieux.

DEUX DYNASTIES

Depuis le milieu du XVIIe siècle jusqu’à nos jours, les Bernoulli, d’origine suisse, ont été des savants distingués. Les ancêtres, les deux frères Jacques et Jean, mathématiciens de premier ordre, ont développé le calcul infinitésimal. Ensuite sont venus Nicolas II, Daniel, Jean II, Jean III, Jérôme, Jacques II et Christophe. Le dernier descendant des grands Bernoulli, physicien et naturaliste, est mort à Bâle en 1863.

Jean-Dominique Cassini, célèbre astronome, fut le premier membre marquant de la famille. Son fils Jacques fut aussi astronome, son petit-fils César-François Cassini de Thury devint membre de l’Académie des sciences à vingt-deux ans. Enfin son arrière-petit-fils Jacques-Dominique, directeur de l’Observatoire, termina la carte de France.

RECOMMANDATION

« Sire, les princes éclairés et généreux aiment à découvrir le mérite modeste et à réparer envers lui les torts de la fortune. Ils se plaisent à donner à l’homme de génie les moyens de jeter sur les sciences cet éclat qu’elles recevront de ses travaux et qui réfléchit sur leur gouvernement. À ce titre, les soussignés, membres de l’Institut de France, se permettent de signaler à la royale bienveillance de Votre Majesté un jeune géomètre M. Abel, dont les productions annoncent un esprit de premier ordre, et qui néanmoins languit à Christiania dans un poste peu digne de son rare et précoce mérite. »

Legendre, Poisson, Lacroix.
ÉCOLE POLYTECHNIQUE

La Convention établit, en 1794, l’École centrale des travaux publics, à l’instigation de Monge, Lamblardie, Carnot et Prieur. Placée au Palais-Bourbon, ne recevant que des externes, l’école devait d’abord alimenter seulement le corps des ingénieurs civils et militaires. C’est en 1795 que l’école prit son nom d’École polytechnique et son caractère actuel. Nous ne pouvons pas raconter ici sa glorieuse histoire, et nous allons nous borner à quelques anecdotes.

Dans la période du début, chaque candidat doit faire constater par la municipalité de sa ville natale « qu’il a constamment manifesté l’amour de la liberté et de l’égalité et la haine des tyrans ». On lit dans un rapport de l’époque : « La manifestation du patriotisme a été généralement nulle. Ils sont presque tous ignorants ou indifférents, tandis que les enfants eux-mêmes balbutient déjà les principes et les hymnes de la liberté ! C’est en vain que j’ai tâché, par des questions brusques, imprévues et même captieuses, de suppléer à l’insuffisance des papiers qu’ils ont produits ; presque tous m’ont montré qu’ils avaient toujours été indifférents au bonheur de leurs semblables, à leur propre bonheur et même aux événements. Quarante de ces jeunes gens, par leur insouciance de tout ce qui est bon, vertueux et utile, méritent d’être rejetés ! »

« Jeunes citoyens, disait plus tard un Ministre de l’intérieur dans un discours, ayez toujours l’amour de la patrie. Si cet amour agit par sentiment sur le reste des hommes, il est permis de penser que c’est grâce aux savants que cet amour est géométriquement démontré. Je peux le dire ici, dans la langue qui vous est familière, la liberté est le théorème donné par la nature, la République en est la démonstration, l’amour de la patrie en est le corollaire. »

Le dimanche matin, l’ordinaire est augmenté d’une omelette au lard, transformation économique du plat qu’on appelait le cochon de Mme Laplace. En effet, la veuve de l’illustre géomètre, lorsqu’elle avait fondé un prix pour l’élève sortant le premier et consistant dans les œuvres de Laplace, avait disposé d’une somme dont le revenu devait être employé à donner un plat supplémentaire le dimanche. Ce plat consista au début en côtelettes de porc frais.

En 1894, il y a eu de belles fêtes polytechniciennes, à l’occasion du centenaire de la fondation de l’École. Des livres commémoratifs ont été publiés.

ÉCOLE NORMALE

Créée à Paris par la Convention, ses quinze cents élèves externes reçurent au Muséum les leçons des maîtres les plus illustres et ces leçons, qui ont été recueillies, sont encore consultées. La plupart de ces élèves enseignèrent, à leur sortie, dans les Écoles centrales des départements. C’est en 1808, que Napoléon réorganisa l’école qui, beaucoup moins nombreuse, devint un internat dans le Lycée Louis-le-Grand et dont les élèves suivirent les cours du Collège de France, de l’École polytechnique et du Muséum. Elle a été transférée à la rue d’Ulm, en 1847, et l’enseignement de ses Maîtres de conférences est devenu à peu près indépendant des cours extérieurs.

Pendant la dernière guerre, les élèves Lande et Szymanski ont gagné la médaille militaire, M. Burdeau a été décoré de la légion d’honneur et Lemoine a été tué à l’ennemi. Deux plaques de marbre noir portent les noms de Lemoine et de Thuillier, élève de M. Pasteur, mort pour la science à Alexandrie où il était allé étudier le choléra.

À la fin des vacances de Pâques de 1895, l’École normale a fêté joyeusement son centenaire. Un grand et beau livre illustré, historique et biographique a été publié chez Hachette, grâce à une collaboration variée. Nous avions ouvert une souscription, en famille, pour faire face aux dépenses. Le reliquat a été déposé dans la caisse de l’Association des anciens élèves.

SCIENCES MILITAIRES

Le maréchal Vaillant proposait de créer à l’Institut une section des sciences militaires. — Je ne connais pas cela, s’écria M. Chasles. Il y a la science, puis viennent les applications. — On eut beau faire, il ameuta tout le monde contre le projet des spécialistes

BROUETTES ET OMNIBUS

La brouette, grâce à laquelle le manœuvre ne s’épuise plus à transporter directement les fardeaux, et l’omnibus, le vulgaire omnibus chanté comme symbole du progrès par Edmond About, ces deux inventions fort pratiques sont dues, dit-on, au grand Pascal.

Le fait a été contesté (voir l’Intermédiaire des chercheurs et des curieux du 10 mai 1891).

BONNE POLITIQUE

Sous le second Empire, Cauchy, professeur à la Faculté des sciences, fut dispensé d’un serment qu’il avait refusé en 1830. La même exception fut faite en faveur d’Arago, directeur de l’Observatoire, vulgarisateur et historien des sciences.

PRÉCOCITÉ

Pascal enfant ayant demandé ce que c’était que la géométrie, on s’était borné à lui répondre qu’il s’agissait de faire des figures exactes et de trouver les proportions qu’elles avaient entre elles. Sur cette seule indication et sans aucun livre, Pascal devina tout le commencement d’Euclide jusqu’à la trente-deuxième proposition.

Lagrange disait en 1801 à propos de Cauchy : vous voyez ce petit jeune homme, eh bien ! il nous remplacera tous, tant que nous sommes de géomètres.

Parmi les mathématiciens précoces on peut citer encore Huygens, Clairaut et J. Bertrand.

TOMBEAU D’ARCHIMÈDE

Je mis tous mes soins à découvrir ce tombeau. Les Syracusains m’affirmaient qu’il n’existait point. À force de recherches, je le trouvai enfin, couvert de ronces et de broussailles. Je fus guidé, dans cette découverte, par quelques lignes d’une inscription qu’on disait avoir été gravées sur le monument, et qui se rapportaient à une sphère et à un cylindre, posés au sommet du tombeau. Parcourant des yeux les nombreux tombeaux qui se trouvent vers la porte d’Agrigente, j’aperçus une petite colonne qui s’élevait au-dessus des buissons : il y avait la figure d’une sphère et d’un cylindre[1]. Je m’écriai aussitôt devant les principaux habitants de Syracuse qui m’accompagnaient. Voilà ce que je cherche ! Beaucoup se jetèrent alors sur les broussailles pour les couper et mettre l’emplacement à découvert. Ce travail achevé, nous nous approchâmes de la colonne. Nous vîmes l’inscription à moitié rongée par le temps. Ainsi, la plus noble et jadis la plus instruite des cités de la Grèce ignorerait la place du tombeau du plus ingénieux de ses citoyens, si un inconnu d’Arpinum n’était pas venu la lui apprendre.

Cicéron.
ATTRACTION UNIVERSELLE

Nous sommes redevables de cette importante découverte à feu M. Newton. Ce grand philosophe et mathématicien anglais se trouvait un jour couché dans un jardin, sous un pommier, une pomme lui tomba sur la tête, et lui fournit l’occasion de faire plusieurs réflexions. Il conçut bien que c’était la pesanteur qui avait fait tomber la pomme, après qu’elle eut été dégagée de la branche, peut-être par le vent ou quelque autre cause. Cette idée paraissait fort naturelle, et tout paysan aurait peut-être fait la même réflexion ; mais le philosophe anglais allait plus loin. Il faut, dit-il, que l’arbre ait été fort haut ; et c’est ce qui lui fit former la question si la pomme serait aussi tombée en bas dans le cas où l’arbre aurait été encore beaucoup plus haut, ce dont il ne pouvait pas douter.

Mais si l’arbre avait été si haut qu’il parvint jusqu’à la lune, il se trouva embarrassé de décider si la pomme tomberait ou non. En cas qu’elle tombât, ce qui lui paraissait pourtant fort vraisemblable, puisqu’on ne saurait concevoir un terme, dans la hauteur de l’arbre, où la pomme cesserait de tomber ; dans ce cas, il faudrait que la pomme eût encore quelque pesanteur qui la pousserait vers la terre : donc, parce que la lune se trouverait au même endroit, il faudrait qu’elle fût poussée vers la terre par une force semblable à celle de la lune. Cependant, comme la lune ne lui tombait point sur la tête, il comprit que le mouvement en pourrait être la cause, de la même manière qu’une bombe peut passer au-dessus de nous sans tomber verticalement en bas. Cette comparaison du mouvement de la lune avec une bombe le détermina à examiner plus attentivement la chose, et, aidé des secours de la plus sublime géométrie, il trouva que la lune suivait dans son mouvement les mêmes règles qu’on observe dans le mouvement d’une bombe ; de sorte que s’il était possible de jeter une bombe à la hauteur de la lune et avec la même vitesse, la bombe aurait le même mouvement que la lune. Il a seulement remarqué cette différence, que la pesanteur de la bombe à cette distance de la terre serait beaucoup plus petite qu’ici-bas.

Euler.

On rapporte que Newton, voulant calculer la quantité dont la lune tombe vers la terre en une seconde et ayant disposé les opérations arithmétiques, reconnut qu’il allait obtenir ce qu’il pressentait. Son émotion fut si grande qu’il ne put continuer le calcul et qu’il fallut qu’un de ses élèves l’achevât.

TOUT PAR DIX

Lors de la création du système métrique, on avait songé à diviser le jour en vingt heures, chaque heure en cent minutes, etc., et la circonférence en quatre ` cents grades, le grade en cent minutes, etc. Cette question de la décimalisation du temps et de la circonférence revient sur l’eau aujourd’hui.

PRÊTRES MENACÉS

Au plus fort de la Terreur, Lalande, quoique paroissien médiocre, cacha à l’Observatoire plusieurs prêtres menacés de mort. « Je vous ferai passer, leur dit-il, pour des élèves astronomes : nous nous occupons du Ciel, vous et moi. »

CIEL EN CRISTAL

Le ciel est ce qui tourne incessamment autour de la terre et de la mer sur deux pivots qui forment les extrémités d’un axe : car en ces endroits, la puissance qui gouverne la nature a fabriqué et mis ces pivots comme deux centres, l’un au-dessus de la terre et de la mer, en haut du ciel et derrière les étoiles du septentrion, l’autre à l’opposé, sous la terre, vers le midi ; et autour de ces deux pivots, comme autour de deux centres, elle a mis de petits moyeux, pareils à ceux d’une roue et d’un tour, sur lequel le ciel tourne continuellement.

Vitruve.

On voit, par ce passage, que les anciens ont cru à l’existence de cieux solides de cristal, tournant sur deux pivots matériels.

À ATHÈNES

Lysias apprit à la fois l’arithmétique par principes et en se jouant : car pour en faciliter l’étude aux enfants, on les accoutume tantôt à partager entre eux, selon qu’ils sont en plus grand ou en plus petit nombre, une certaine quantité de pommes ou de couronnes ; tantôt à se mêler, dans leurs exercices, suivant des combinaisons données, de manière que le même occupe chaque place à son tour. Apollodore ne voulut pas que son fils connût ni ces prétendues propriétés que les Pythagoriciens attribuent aux nombres, ni l’application qu’un intérêt sordide peut faire du calcul aux opérations du commerce. Il estimait l’arithmétique, parce qu’entre autres avantages elle augmente la sagacité de l’esprit et le prépare à la connaissance de la géométrie et de l’astronomie.

Lysias prit une teinture de ces deux sciences. Avec le secours de la première, il pourrait plus aisément asseoir un camp, presser un siège, ranger des troupes en bataille, les faire rapidement mouvoir dans une marche ou dans une action. La seconde devait la garantir des frayeurs que les éclipses et les phénomènes extraordinaires inspiraient il n’y a pas longtemps aux soldats.

Abbé Barthélemy.
PORTRAIT CHERCHÉ

La ville de Dax, patrie du chevalier de Borda, né en 1733 et mort en 1799, devait élever une statue à cet illustre ingénieur, géomètre et marin.

Le comité chargé de recueillir les souscriptions a rapidement trouvé les fonds nécessaires, mais il a été en présence d’une difficulté sérieuse, qui a menacé même de réduire à néant ses patriotiques intentions : on ne possédait aucun portrait du chevalier de Borda. Le comité fit appel à tous ceux qui pouvaient détenir un buste, un portrait ou une miniature. Peine inutile : Borda n’avait jamais songé à poser devant un statuaire ou un peintre quelconque.

On se trouvait donc exposé à un avortement imprévu quand on se souvint qu’il y avait à Brest un vaisseau portant le nom de Borda, à bord duquel était installée l’école navale. On sut que la poulaine de ce navire était ornée d’un buste doré : ce ne pouvait être que celui du chevalier de Borda. On s’adressa donc à la marine pour en obtenir une photographie. La difficulté allait donc être tranchée. Erreur ! Le vaisseau le Borda, avant de recevoir ce nom illustre, avait été baptisé du nom de Valmy et l’on apprit en même temps que le buste qui en ornait la poulaine était celui de Kellermann, le vainqueur des Prussiens en 1792. Mais en poursuivant les recherches, on parvint à trouver dans le Musée naval du port de Brest, où Borda a longtemps servi comme ingénieur et comme inspecteur général des constructions, non pas un buste mais bien deux, portant son nom, au milieu de beaucoup d’autres bustes portant les noms illustres de Jean-Bart, de Vauban, etc. Mais, nouvelle cause d’indécision, ces deux bustes ne se ressemblent pas : l’un représente les traits d’un personnage gras et suffisamment joufflu ; l’autre présente l’aspect d’un homme maigre et fluet. Lequel des deux bustes est le bon ? Les deux assurément, si ce que l’on suppose est fondé, à savoir que l’un, le fluet, a dû représenter Borda dans sa jeunesse, et l’autre, le joufflu, dans son âge mûr, à une époque où le chevalier a dû prendre de l’embonpoint. À moins que ce ne soit ni l’un ni l’autre, ce qui serait regrettable mais ce qu’on ne saurait supposer.

Quoi qu’il en soit, la Marine se rendant au désir de la ville de Dax, a expédié au comité d’organisation la photographie des deux bustes dissemblables qu’elle possède. On a choisi et la statue de Borda a été érigée le 24 mai 1891.

SURSUM CORDA

Une grande erreur est de penser que l’enthousiasme est inconciliable avec les vérités mathématiques. Je suis persuadé qu’il est tel problème, de calcul, d’analyse de Kepler, de Galilée, de Newton, d’Euler, la solution de telle équation, qui supposent autant d’invention, d’inspiration que la plus belle ode de Pindare. Ces pures et incorruptibles formules, qui étaient avant que le monde fût, qui seront après lui, qui dominent tous les temps, tous les espaces, qui sont, pour ainsi dire, une partie intégrante de Dieu, ces formules sacrées qui survivront à la ruine de tous les univers, mettent le mathématicien qui mérite ce nom, en communication avec la pensée divine. Dans ces vérités immuables, il savoure le plus pur de la création ; il prie dans sa langue. Il dit au monde comme cet ancien : « Faisons silence, nous entendrons le murmure des dieux ! »

Edgard Quinet.

Il est des vérités scientifiques, dit Descartes, qui sont des batailles gagnées ; racontez aux jeunes gens les principales et les plus héroïques de ces batailles : vous les intéresserez aux résultats mêmes des sciences, et vous développerez chez eux l’esprit scientifique, au moyen de l’enthousiasme pour la conquête de la vérité ; vous leur ferez comprendre la puissance de raisonnement qui a amené les découvertes actuelles et en amène d’autres. Quel intérêt prendraient l’arithmétique et la géométrie, si l’on joignait un peu de leur histoire à l’exposition de leurs principales théories, si l’on assistait aux efforts des Pythagore, des Platon, des Euclide, ou, plus tard des Viète, des Pascal, des Leibniz ! Les grandes théories, au lieu d’être des abstractions mortes et anonymes, deviendraient des vérités vivantes, humaines, ayant leur histoire, comme une statue qui est de Michel-Ange, comme un tableau qui est de Raphaël.

Alfred Fouilliée
PRÉCURSEUR

D’après Grégori et Maclaurin, Pythagore aurait deviné la loi précise de la gravitation universelle. Voici un curieux extrait du premier de ces savants :

Une corde de musique, dit Pythagore, donne les mêmes sons qu’une autre corde, dont la longueur est double, lorsque la tension ou la force avec laquelle la dernière est tendue est quadruple ; et, la gravitation d’une planète est quadruple de la gravitation d’une autre, qui est à distance double. En général, pour qu’une corde de musique puisse devenir à l’unisson d’une corde plus courte de même espèce, sa tension doit être augmentée dans la même proportion que le carré de sa longueur est plus grand ; et afin que la gravité d’une planète devienne égale à celle d’une autre planète plus proche du soleil, elle doit être augmentée à proportion que le quarré de sa distance au soleil est plus grand. Si donc nous supposons des cordes de musique tendues du soleil à chaque planète, pour que ces cordes deviennent à l’unisson, il faudrait augmenter leur tension, dans les mêmes proportions qui seraient nécessaires pour rendre les gravités des planètes égales. C’est de la similitude de ces rapports que Pythagore a tiré sa doctrine de l’harmonie des sphères.

COURTISANS

Louis XVIII dit, un jour, à un mathématicien célèbre : « Monsieur, vous pourriez peut-être m’aider à résoudre un problème ? Comment se fait-il qu’ayant été accompagné par une cinquantaine de personnes quand je suis parti pour Gand, j’en trouve aujourd’hui dix mille qui prétendent y avoir été avec moi ? »

UN DUEL

Né en 1811, Évariste Galois, mathématicien de génie, est mort à vingt ans dans un duel. M. P. Dupuy a publié, en 1896, une notice sur Galois, dans les Annales de l’École normale supérieure et il a reconstitué, avec un soin extrême, une vie malheureuse et peu connue.

VÉRITÉ HISTORIQUE

Dans le premier volume de son Cours d’études historiques, Daunou explique assez longuement pourquoi, suivant lui, le calcul n’est pas applicable à l’appréciation des témoignages en histoire.

On trouve sur le même sujet, dans les Indications de Clio par Zchokke, cette anecdote assez curieuse. Un amateur avait enregistré, d’après les journaux du temps, le nombre des victimes de la Révolution et des guerres de l’Empire. Il était arrivé ainsi au total de 142 214 817 morts et il allait publier ce grand nombre avec détails et preuves à l’appui, lorsqu’un ami lui fit remarquer l’absurdité du résultat. L’Europe ne comptait que cent quatre-vingts millions, de sorte que les journalistes l’avaient presque dépeuplée en vingt ans !

LÉGENDE

J’ai entendu dire qu’aux environs de Naucratis d’Égypte exista un des plus anciens dieux, celui auquel est consacré l’oiseau qu’on appelle Ibis : que son nom est Theut, et que le premier, il avait découvert le Nombre, le Calcul, la Géométrie, les Dames et les Dés.

Platon (Phèdre.)
INVENTEURS

N’est-il pas, pour le moins, aussi nécessaire d’enseigner les ressources employées, à diverses époques, par les hommes de génie, pour parvenir à la vérité, que les efforts pénibles qu’ils ont été ensuite obligés de faire pour la démontrer selon le goût des esprits ou timides ou peu capables de se mettre à leur portée ?

Poncelet.
DOCUMENTS

Que, dans l’étude des mathématiques, on fasse table rase du passé, qu’on les enseigne dégagées de tout document historique, cela n’est pas sans inconvénients.

J.-B. Dumas.
NAPOLÉON

Arago rapporte ces paroles de Napoléon à M. Lemercier, membre de l’Institut :

« Pensez-vous que si je n’étais pas devenu général en chef et l’instrument d’un grand peuple, j’aurais couru les bureaux et les salons pour me mettre dans la dépendance de qui que ce fût, en qualité de ministre ou d’ambassadeur ? Non, non ! je me serais jeté dans l’étude des sciences exactes, j’aurais fait mon chemin dans la route des Galilée et des Newton ; et puisque j’ai réussi constamment dans mes grandes entreprises, eh bien ! je me serais hautement distingué aussi par des travaux scientifiques ; j’aurais laissé le souvenir de belles découvertes : aucune autre gloire n’aurait pu tenter mon ambition. »

On conserve aux Archives de l’Institut un rapport de Laplace, Bonaparte et Lacroix (23 octobre 1799) sur un mémoire de Biot intitulé : Considérations sur les équations aux différences mêlées.

Napoléon trouvait avec une facilité prodigieuse la solution de problèmes géométriques très compliqués. Il étonnait Monge lui-même.

EXPÉRIMENTONS

Les progrès des sciences expérimentales ont insensiblement amené les esprits à concevoir toute science sur leur modèle. Le type de certitude scientifique était autrefois la démonstration géométrique ; c’est maintenant la vérification expérimentale. Non que les mathématiques aient rien perdu, à nos yeux, de leur inflexible rigueur, et d’ailleurs, la possibilité d’une mesure exacte avec la réduction à une formule mathématique est de plus en plus le signe d’une théorie scientifique faite ; mais nous regardons moins volontiers du côté de la géométrie pure.

Ollé-Laprune.

Les mathématiques, transcendantes surtout, ne conduisent à rien de précis sans l’expérience : c’est une espèce de métaphysique générale où les corps sont dépouillés de leurs qualités individuelles ; — il resterait à faire un grand ouvrage qu’on pourrait appeler l’Application de l’Expérience à la Géométrie ou Traité de l’Aberration des Mesures.

Diderot.

À l’aide de quelques axiomes, tirés soit de l’esprit humain, soit de l’observation et en procédant uniquement par voie de raisonnement, la géométrie avait commencé, dès le temps des Grecs, à élever ce merveilleux édifice, qui a subsisté et qui subsistera toujours sans aucun changement essentiel. La logique règne ici en souveraine, mais c’est dans le monde des abstractions. Les déductions mathématiques ne sont certaines que pour leur ordre même ; elles n’ont aucune existence effective en dehors de la logique. Si on les applique à l’ordre des réalités, elles y constituent un instrument puissant, mais elles ne sont pas autre chose ; leurs affirmations tombent aussitôt sous la condition commune, c’est-à-dire que les prémisses doivent être tirées de l’observation, et que la conclusion doit être contrôlée par cette même observation.

Berthelot.

Les sciences de la matière relèvent toutes, sans exception, des sciences de l’esprit, parmi lesquelles on doit ranger les mathématiques… Pas une application ne serait possible sans le secours de leurs formules abstraites, pas le plus petit progrès sans leur concours et leur permission.

Charraux.

Dans les mathématiques, on suit surtout une méthode déductive.

Une science ne peut être considérée comme arrivée à la perfection que quand, à l’exemple des mathématiques, toutes les vérités partielles peuvent être démontrées à l’aide de quelques axiomes généraux.

La division des sciences en inductives et déductives ne se rapporte qu’à leur développement successif. Plus la science est parfaite, plus la déduction y a d’application.

Bougaev.
HARDIESSE

La théorie des parallèles n’a fait aucun progrès depuis Euclide jusqu’au commencement de notre siècle. Tous les efforts pour démontrer le postulatum d’Euclide ou une proposition équivalente étaient restés infructueux, lorsque Lobattcheffsky en 1829 et Bolyai en 1832, changeant résolument de voie, conçurent et exécutèrent séparément le projet hardi de supposer que la proposition n’était pas vraie et de constituer un nouveau système de géométrie non contradictoire, en poussant jusqu’à ses dernières limites le développement de leur hypothèse. Gauss qui par ses propres méditations avait obtenu les mêmes résultats dès 1792, sans toutefois avoir rien publié sur ce sujet, assura par son patronage le succès de l’œuvre de Lobattcheffsky qui, écrivait-il à Schumacher « avait traité la matière de main de maître ». Depuis lors, un grand nombre de géomètres, parmi lesquels il faut surtout citer Riemann et Beltrami, ont considérablement agrandi le champ de ces spéculations.

Rouché.
PREMIÈRE SCIENCE

Les mathématiques étant une science de raisonnement, dans laquelle l’observation n’a presque rien, et l’expérience absolument rien à faire, a dû être constituée longtemps avant les autres sciences. Il est clair que pour compter ou pour comparer des grandeurs entre elles, l’homme n’a pas eu besoin de connaître la nature. Le calcul et la géométrie se sont donc formés dans une indépendance absolue vis-à-vis des autres catégories de connaissances. Mais, par cela même, le calcul et la géométrie ont eu pendant des siècles, un développement de perfection très supérieur à ce qu’exigeaient les besoins de la vie en société. Chez les Anciens, les seuls esprits cultivés jouissaient de la contemplation des vérités abstraites formulées par Pythagore, Archimède et Euclide. Aussi ces vérités indispensables à l’établissement des sciences d’observation comme l’astronomie, et des sciences expérimentales comme la physique, étaient-elles condamnées à attendre que le développement de la vie collective eût acquis des proportions convenables.

Foucou.
CANONISÉS

Saint Anatolius est l’auteur d’Institutions arithmétiques.

Gerbert, devenu pape sous le nom de Saint Sylvestre II, était un remarquable mathématicien.

Saint Guillaume d’Hirschau a écrit sur le comput ecclésiastique et inventé des instruments d’astronomie.

Enfîn, d’après Cantor, l’historien des mathématiques, Boèce, et Symmaque, auraient aussi été canonisés.

Voici un extrait de la préface janséniste d’une géométrie réformatrice dûe à Arnauld :

« Entre les exercices humains qui peuvent le plus disposer l’esprit à recevoir les vérités Chrestiennes avec moins d’opposition et de dégoust, il semble qu’il n’y en ait guères de plus propre que la géométrie. Car rien n’est plus capable de détacher l’âme de cette application aux sens, qu’une autre application à un objet qui n’a rien d’agréable selon les sens ; et c’est ce qui se rencontre parfaitement dans cette science. Elle n’a rien du tout qui puisse favoriser tant soit peu la pente de l’âme vers les sens ; son objet n’a aucune liaison avec la concupiscence ; elle est incapable d’éloquence et d’agrément dans le langage ; rien n’y excite les passions ; elle n’a rien du tout d’aimable que la vérité, et elle la présente à l’âme toute nue et détachée de tout ce que l’on aime de plus dans les autres choses. »

Agripa, l’auteur du Traité de la vanité des sciences, est d’avis différent :

« Combien que ces disciplines (les mathématiques) n’aient causé en l’Église de Dieu guères d’hérésies, ou point du tout, si est ce que comme dit Saint Augustin, elles sont inutiles à notre salut, plutôt nous détournant de Dieu, et induisant à pécher que autrement ; et ne sont ainsi que Saint Hierome affirme, sciences de personnes craignans Dieu. »

Michelet fait, dans son Journal, cette déclaration assez inattendue de sa part. « J’aime assez ce régime : les mathématiques et l’Évangile ; il y a là tout ce qu’il faut pour l’âme. »


  1. Archimède a démontré que toute sphère est les 2/3 du cylindre circonscrit.