Théorie du mouvement des corps célestes/L1S2

Traduction par Edmond Dubois.
(p. 59-104).

DEUXIÈME SECTION.
RELATIONS CONCERNANT UNE SEULE POSITION DANS L’ESPACE.
47

Dans la première section du mouvement des corps célestes dans leurs orbites, il n’a pas été question de la position que ces orbites occupent dans l’espace. Pour que cette situation soit déterminée de manière que l’on puisse assigner les positions relatives des corps célestes avec n’importe quels autres points de l’espace, il faut évidemment connaître non-seulement la situation du plan de l’orbite par rapport à un certain plan déterminé (par exemple, le plan de l’orbite terrestre ou l’écliptique), mais encore la position de l’apside dans ce plan. Comme ces positions sont le plus facilement établies par la trigonométrie sphérique, nous imaginons une surface sphérique d’un rayon arbitraire, décrite autour du Soleil comme centre et dans laquelle tout plan passant par le Soleil détermine un grand cercle, et toute droite menée par le Soleil détermine un point. Nous menons aussi par le Soleil des plans et des droites parallèles aux plans et aux droites ne passant pas par le Soleil, et nous concevons les grands cercles et les points qui en résultent dans la sphère céleste comme correspondant à ces plans et à ces droites ; la sphère peut aussi être supposée décrite avec un rayon infiniment grand sur laquelle les plans parallèles et les droites parallèles sont représentés de la même manière.

À moins donc que le plan de l’orbite ne coïncide avec le plan de l’écliptique, les grands cercles qui correspondent à ces plans (grands cercles que, pour plus de simplicité, nous nommerons orbite et écliptique) se coupent en deux points que l’on appelle nœuds ; l’astre, considéré comme vu du Soleil, traversera, à l’un des noeuds, l’écliptique en allant de la région sud vers la région nord, et à l’autre, en allant de la région nord dans la région sud ; le premier s’appelle nœud ascendant, et le second nœud descendant. Nous déterminons la position des nœuds dans l’écliptique par leur distance à l’équinoxe vernal moyen (longitude) comptée suivant l’ordre des signes. Soit dans la figure 1, le nœud ascendant, une portion de l’écliptique, une partie de l’orbite ; le mouvement de la Terre et celui du corps céleste ayant lieu dans des directions allant de vers et de vers , il est évident que l’angle sphérique formé par et peut croître depuis jusqu’à 180° mais jamais aller au delà puisque cesserait alors d’être le nœud ascendant ; nous appelons cet angle l’inclinaison de l’orbite sur l’écliptique. La position du plan de l’orbite étant déterminée par la longitude du nœud et l’inclinaison de l’orbite, il ne reste plus à connaître que la distance du périhélie au nœud ascendant, distance que nous comptons dans la direction même du mouvement, et par suite que nous considérons comme négative ou comprise entre 180° et 360° toutes les fois que le périhélie est situé dans la région sud de l’écliptique. Il faut encore noter les conventions suivantes : La longitude d’un point quelconque sur le cercle de l’orbite est comptée à partir d’un point situé sur l’orbite, en arrière du nœud et à une distance égale à celle dont le point équinoxial vernal est en arrière du même nœud sur l’écliptique ; d’après cela, la longitude du périhélie est la somme de la longitude du nœud et de la distance du périhélie au nœud ; et la longitude vraie d’un astre, dans l’orbite, est la somme de l’anomalie vraie et de la longitude du périhélie. On nomme enfin longitude moyenne la somme de l’anomalie moyenne et de la longitude du périhélie ; cette dernière ne peut évidemment s’appliquer qu’aux orbites elliptiques.

48

Afin qu’on puisse donc assigner la position d’un corps céleste dans l’espace à un moment donné, il faut connaître, pour une orbite elliptique, les quantités suivantes :

I. La longitude moyenne à partir d’un instant quelconque arbitraire que l’on nomme l’époque ; la longitude elle-même est aussi désignée quelquefois par le même nom. Le plus souvent on choisit pour époque le commencement d’une certaine année, c’est-à-dire le midi du 1er janvier pour une année bissextile, ou le midi du 31 décembre précédent pour une année commune.

II. Le mouvement moyen dans un certain intervalle de temps, par exemple dans un jour solaire moyen ou dans 365 jours, dans 365 jours 1/4 ou 365,25 jours.

III. Le demi-grand axe, qui peut en vérité être omis, toutes les fois que la masse du corps est connue ou peut être négligée, puisqu’il est déjà donné par le mouvement moyen (art. 7) ; on a cependant coutume de donner l’un et l’autre pour plus de commodité.

IV. L’excentricité.

V. La longitude du périhélie.

VI. La longitude du nœud ascendant.

VII. L’inclinaison de l’orbite.

Ces sept quantités sont appelées les éléments du mouvement de l’astre.

Dans la parabole et l’hyperbole, on se sert de l’époque du passage au périhélie à la place du premier élément ; à la place de II, on donne les quantités qui, dans ces sortes de sections coniques, sont analogues au mouvement moyen diurne. (Voy. art. 19 ; dans le mouvement hyperbolique la quantité , art. 23.) Dans l’hyperbole les autres éléments peuvent être conservés les mêmes ; mais dans la parabole, où le grand axe est infini et l’excentricité on considérera la distance périhélie à la place des éléments III et IV.

49

Selon la manière habituelle de s’exprimer, l’inclinaison de l’orbite, que nous comptons depuis zéro jusqu’à 180°, s’étend seulement jusqu’à 90°, et si l’angle formé par l’orbite avec l’arc (fig. 1), dépasse un angle droit, l’angle de l’orbite avec l’arc (qui est son complément à 180°) est considéré comme l’inclinaison de l’orbite ; dans un tel cas il est alors convenable d’ajouter que le mouvement est rétrograde (comme si, dans notre figure, représentait une partie de l’orbite), afin de le distinguer de l’autre cas, où le mouvement est appelé direct.

La longitude dans l’orbite est ordinairement comptée de manière qu’au nœud elle s’accorde avec la longitude de ce point dans l’écliptique, mais décroisse dans la direction c’est pourquoi le point initial à partir duquel les longitudes sont comptées contrairement à l’ordre du mouvement dans la direction , est autant distant du point que l’équinoxe vernal est distant du même point dans la direction Dans ce cas la longitude du périhélie sera donc la longitude du nœud diminuée de la distance du périhélie au nœud. De la sorte, l’une de ces manières de compter est aisément convertie en l’autre ; mais nous avons préféré la nôtre, afin que nous puissions négliger la distinction entre le mouvement direct et le mouvement rétrograde et employer toujours pour l’un et l’autre cas les mêmes formules, lorsque la définition habituelle exige souvent de doubles principes.

50

Le procédé le plus simple pour déterminer, relativement à l’écliptique, la position d’un point quelconque sur la sphère céleste, s’obtient par sa distance à l’écliptique (latitude), et la distance au point vernal du point de rencontre de l’arc perpendiculaire abaissé du point considéré sur l’écliptique (longitude). La latitude comptée de part et d’autre de l’écliptique jusqu’à 90°, est regardée comme positive dans la région boréale et comme négative dans la région australe.

Soient la longitude et la latitude qui correspondent au lieu héliocentrique du corps céleste, c’est-à-dire à la projection sur la sphère céleste de la droite menée du Soleil à l’astre ; soient ensuite la distance du lieu héliocentrique au nœud ascendant (on la nomme l’argument de la latitude), l’inclinaison de l’orbite, la longitude du nœud ascendant ; il existera entre les quantités qui seront des éléments d’un triangle sphérique rectangle, les relations suivantes que l’on trouve facilement sans aucune restriction :

I.
II.
III.
IV.

Quand et sont les quantités données, s’en déduisent à l’aide de l’équation I, et ensuite au moyen des équations II ou III, si toutefois n’approche pas trop près de ±90° ; on peut, si cela convient, employer la formule IV à confirmer l’exactitude du calcul. Les formules I et IV montrent en outre que et sont toujours compris dans le même quadrant, toutes les fois que est compris entre et 90° ; au contraire, et appartiennent au même quadrant quand est compris entre 90° et 180° ou, selon l’usage ordinaire, toutes les fois que le mouvement est rétrograde : de là l’ambiguïté qui existe dans la détermination de par la tangente, d’après la formule I, est promptement levée.

Les formules suivantes se déduisent facilement en combinant les premières :

V.
VI.
VII.
VIII.
IX.
X. .

L’angle , toutes les fois que est plus petit que 90°, ou toutes les fois que dépasse 90° est, d’après l’usage ordinaire, appelé la réduction à l’écliptique ; il est en effet, la différence entre la longitude héliocentrique et la longitude dans l’orbite qui est selon cet usage (d’après le nôtre ). Toutes les fois que l’inclinaison est petite ou peu différente de 180°, cette réduction peut être considérée comme une quantité du second ordre, et dans ce cas il sera certainement préférable de calculer d’abord par la formule III, et ensuite par VII ou X ; de cette manière il sera permis d’atteindre une précision plus grande que par la formule I.

Si l’on abaisse une perpendiculaire de la position du corps céleste dans l’espace sur le plan de l’écliptique, la distance du point d’intersection au Soleil est appelée la distance raccourcie. En la désignant par le rayon vecteur aussi par , nous aurons

XI.
51

Comme exemple, nous continuerons plus avant, le calcul commencé dans les articles 13 et 14, dont la planète Junon nous avait fourni les nombres.

Nous avons trouvé ci-dessus l’anomalie vraie , le logarithme du rayon vecteur soient maintenant, , la distance du périhélie au nœud , et par suite  ; soit enfin De là nous avons :

9,4630573  9,4348691
9,9885266   9,3672305
9,4515839   8,8020996
195° 47′ 40,25″   3° 37′ 40,02″n
306° 55′ 28,98″   9,9991289
0,3259877   9,9832852
9,9991289     9,9824141
0,3251166   9,9824141

Le calcul, d’après les formules III, VII, se ferait de la manière suivante :

9,4454714  9,0604259
9,3557570   8,8020995
8,8012284   9,9824141
3° 37′ 40,02″n   7,8449395
360° 24′ 03,34″n
195° 47′ 40,25″n
52

En considérant et comme des quantités variables, la différentiation de l’équation III, article 50, donne

.
ou
XII.

De même, en différentiant l’équation I, nous obtenons

(XIII)

Enfin, par la différentiation de l’équation XI, il vient

,

ou

.

Dans cette dernière équation les termes qui contiennent et doivent être divisés par ou les autres termes être multipliés par ce même nombre, si les variations de et sont supposées exprimées en secondes.

53

La situation d’un point quelconque dans l’espace est déterminée le plus commodément par ses distances à trois plans se coupant à angles droits. En prenant le plan de l’écliptique pour l’un de ces plans, et en désignant par la distance du corps céleste à ce plan, prise positivement dans la partie boréale et négativement dans la partie australe, nous aurons évidemment . Les deux autres plans, que nous supposons aussi menés par le Soleil, projetteront des grands cercles sur la sphère céleste, qui couperont l’écliptique à angles droits et dont les pôles seront par suite situés dans l’écliptique et distants l’un de l’autre de 90°. Nous appelons pôle positif, celui, de chaque plan, situé du côté où les distances sont considérées comme positives. Soient, d’après cela, et les longitudes des pôles positifs, et supposons que les distances aux plans auxquels ils correspondent respectivement, soient désignées par et . On apercevra alors facilement, que l’on a

relations qui se changent en

C’est pourquoi, si le pôle positif du plan des est placé dans le nœud ascendant lui-même, de sorte que , nous aurons entre les coordonnées , , les expressions les plus simples,

Mais si cette supposition n’a pas lieu, les formules données ci-dessus acquerront cependant une forme presque aussi commode par l’introduction de quantités auxiliaires , , , déterminées de telle sorte que l’on ait

(voyez art. 14, II). On aura alors évidemment,

54

Les relations du mouvement par rapport à l’écliptique expliquées dans l’article précédent, existeront évidemment encore quoiqu’on substitue tout autre plan à l’écliptique, pourvu que la position du plan de l’orbite par rapport à ce nouveau plan soit connue ; mais alors les expressions de longitude et de latitude devront être supprimées. C’est pourquoi se présente de lui-même le problème : De la position connue du plan de l’orbite et d’un autre nouveau plan, par rapport à l’écliptique, déduire la position du plan de l’orbite, par rapport à ce nouveau plan. Soient les parties des grands cercles que le plan de l’écliptique, le plan de l’orbite et le nouveau plan déterminent dans la voûte céleste (fig. 2). Pour que l’inclinaison du second cercle sur le troisième et la position du nœud ascendant puissent être assignées, sans ambiguïté, on devra choisir dans le troisième cercle l’une ou l’autre direction comme étant analogue à celle qui dans l’écliptique est suivant l’ordre des signes ; soit, dans notre figure, cette direction représentée de vers .

Il sera en outre nécessaire de considérer l’un des deux hémisphères que le cercle sépare, comme étant analogue à l’hémisphère boréal et l’autre à l’hémisphère austral ; ces hémisphères sont par le fait déjà distincts, puisqu’il est toujours regardé comme boréal, celui situé à droite pour qui marche en avant suivant l’ordre des signes[1]. Dans notre figure, alors, , , sont les nœuds ascendants du second cercle sur le premier, du troisième sur le premier et du second sur le troisième ; les inclinaisons du second sur le premier, du troisième sur le premier et du second sur le troisième. Notre problème dépend donc de la solution d’un triangle sphérique dans lequel, d’un côté et des angles adjacents on veut déduire les autres parties. Nous supprimons, comme suffisamment connus, les principes ordinaires enseignés pour ce cas, dans la trigonométrie sphérique ; mais dans la pratique on emploie plus facilement une autre méthode, déduite de certaines équations, que l’on chercherait vainement dans nos ouvrages trigonométriques. Voici ces équations, dont nous nous servirons fréquemment dans la suite : , , désignent les côtés du triangle sphérique et , , les angles qui leur sont respectivement opposés :

I.
II.
III.
IV.

Quoiqu’il soit convenable, afin d’être plus concis, de passer ici la démonstration de ces formules, chacun pourra aisément les vérifier pour les triangles dans lesquels ni les côtés ni les angles ne dépassent 180°. Mais si la forme d’un triangle sphérique est conçue dans sa plus grande généralité, de sorte que ni les côtés ni les angles ne soient restreints à aucune limite (ce qui offre plusieurs avantages remarquables, mais exige certains éclaircissements préliminaires), des cas peuvent exister où il est nécessaire de changer le signe de toutes les équations précédentes ; mais puisque les mêmes signes sont évidemment rétablis aussitôt qu’un des angles ou l’un des côtés est augmenté ou diminué de 360°, on pourra toujours conserver en toute sûreté les signes tels que nous les donnons, soit qu’étant donnés un côté et les angles adjacents, ou un angle et les côtés adjacents, on demande les autres parties ; toujours, en effet, on obtiendra par nos formules, ou les valeurs cherchées elles-mêmes, ou des valeurs différant de 360° des véritables, et par conséquent équivalentes à celles-ci. Nous réservons pour une autre occasion une explication plus complète de ce sujet, parce que l’on pourra facilement, par une induction rigoureuse, c’est-à-dire au moyen d’une complète énumération de tous les cas, prouver que les principes que nous établissons par ces formules, tant pour la solution de notre problème que pour d’autres questions, conviennent en général dans tous les cas.

55

En désignant, comme ci-dessus, la longitude du nœud ascendant de l’orbite sur l’écliptique par , l’inclinaison par ensuite la longitude du nœud ascendant du nouveau plan relativement à l’écliptique par , l’inclinaison par  ; la distance du nœud ascendant de l’orbite, dans le nouveau plan, au nœud ascendant du nouveau plan, dans l’écliptique, par (c’est l’arc dans la fig. 2), l’inclinaison de l’orbite sur ce nouveau plan par  ; enfin l’arc de à selon la direction du mouvement par les côtés de notre triangle sphérique seront et les angles opposés De là on aura, d’après les formules de l’article précédent,

Les deux premières équations fourniront et les deux dernières, et de et s’obtiendront et de ou (dont l’accord servira à confirmer le calcul) on déduira L’ambiguïté, s’il faut prendre et entre et 180° ou entre 180° et 360°, sera levée par la considération que non-seulement mais encore doit être positif puisque par la nature des choses doit toujours être plus petit que 180°.

56

Il ne sera pas inutile d’éclaircir par un exemple les principes précédents. Soient soit ensuite un nouveau plan parallèle à l’équateur, et par suite, nous posons l’angle qui sera l’obliquité de l’écliptique

Nous avons d’après cela,

07° 31′ 46,3″ 03° 45′ 53,15″
58° 05′ 56,9″ 29° 02′ 58,45″
11° 10′ 05,3″ 05° 35′ 02,65″
8,8173026  9,9990618
9,6862484   8,9881405
9,9416108   9,9979342
De là on a
8,5035510  8,7589134
8,9872023   9,9969960
d’où 341° 49′ 19,01″   d’où 356° 41′ 31,43″
9,0094368   9,9977202

Nous obtenons ainsi

Du reste le point correspond évidemment dans la sphère céleste à l’équinoxe d’automne ; c’est pourquoi, la distance sur l’équateur du nœud ascendant de l’orbite à l’équinoxe vernal (son ascension droite) sera

Afin d’éclaircir l’article 53, nous continuerons encore plus loin cet exemple et nous développerons les formules relatives aux coordonnées qui se rapportent aux trois plans passant par le Soleil, dont un est supposé parallèle à l’équateur et les pôles positifs des deux autres situés par et 90° d’ascension droite ; soient respectivement les distances à ces plans.

Si maintenant les distances du lieu héliocentrique dans la sphère céleste aux points sont en outre respectivement désignées par on aura 14° 52′ 12,42″, et les quantités qui, dans l’art. 53, sont désignées par le seront ici par De cette manière, on trouve par les formules données dans ce paragraphe :

9,9687197  9,5638038
9,3346380   9,9393319
d’où 00248° 55′ 22,97″   d’où 00158° 05′ 54,97″
9,9987923   9,9920848

Nous avons donc

dans lesquelles

.

Une autre solution du problème traité ici se trouve dans « Von Zach’s Monatliche Correspondenz, » B. IX, S. 385.

57

La distance d’un corps céleste à un plan quelconque passant par le Soleil pourra donc être réduite à la forme , en désignant par l’anomalie vraie ; et sera le sinus de l’inclinaison de l’orbite sur ce plan, la distance du périhélie au nœud ascendant de l’orbite dans le même plan. Tant que la situation du plan de l’orbite et de la ligne des apsides dans ce plan, et aussi la position du plan auquel les distances sont rapportées peuvent être considérées comme constantes, et seront aussi constants. Cependant cette méthode sera fréquemment mise en usage dans tel cas, où au moins la troisième supposition ne sera pas permise, quoique les perturbations qui affectent toujours quelque peu la première et la seconde hypothèse, soient négligées. Cela arrivera toutes les fois que les distances sont rapportées à l’équateur ou à un plan coupant l’équateur à angle droit en une ascension droite donnée : comme, en effet, en raison de la précession des équinoxes et en outre de la nutation, la position de l’équateur est mobile (si l’on considère la position vraie et non la position moyenne), et seront aussi, dans ce cas, sujets à des changements lents, il est vrai. Le calcul de ces variations peut être résolu par des formules différentielles obtenues sans difficulté ; mais ici, pour plus de brièveté, il doit suffire d’ajouter les variations différentielles des quantités en tant qu’elles dépendent des variations de et de  :

Du reste, toutes les fois qu’il s’agira seulement de calculer plusieurs positions d’un corps céleste relativement à de tels plans variables, positions qui embrassent un intervalle de temps médiocre (une année, par exemple), il sera, le plus souvent, beaucoup plus commode de calculer les quantités et pour deux époques entre lesquelles tombent celles considérées, et de déduire de ces quantités, par une simple interpolation, leurs variations pour chacune des époques proposées.

58

Nos formules pour les distances à des plans donnés contiennent et toutes les fois qu’il faut d’abord déterminer ces quantités d’après le temps, on pourra supprimer encore une partie des opérations et abréger ainsi le travail d’une manière notable. Ces distances peuvent, en effet, être obtenues immédiatement par une formule fort simple au moyen de l’anomalie excentrique dans l’ellipse, ou de la quantité ou dans l’hyperbole, de sorte qu’on n’a nullement besoin de calculer l’anomalie vraie et le rayon vecteur. L’expression est en effet changée ;

I. Pour l’ellipse, en conservant les notations de l’art. 8, en

.

En déterminant donc , et par les équations

notre expression se change en dans laquelle seront constantes, tant qu’il sera permis de considérer comme des constantes ; si cela ne peut être, les relations que nous avons données dans l’article précédent suffiront pour calculer leurs variations.

Pour donner un exemple, nous ajoutons la transformation de l’expression relative à trouvée dans l’art. 56, dans laquelle nous supposons la longitude du périhélie , La distance du périhélie au nœud ascendant dans l’écliptique devient donc  ; de là Nous avons de cette manière :

0,4411713  0,1727000
9,7315887   0,3531154
0,4276456   d’où 213° 25′ 51,30″n
9,9254698   0,4316627
  9,5632352
  0,3657929

II. Dans l’hyperbole la formule , d’après l’art. 21, se change en si l’on pose on peut évidemment, réduire aussi la même expression à la forme

.

Si à la place de on emploie la quantité auxiliaire , l’expression , d’après l’art. 21, se change en

,

sont déterminés au moyen des formules



III. Dans la parabole, où l’anomalie vraie se déduit immédiatement du temps, il n’y a rien autre chose à faire qu’à substituer au rayon vecteur sa valeur. En désignant alors par la distance périhélie, l’expression devient

59

On peut évidemment appliquer aussi aux distances de la Terre les principes relatifs à la détermination des distances aux plans passant par le Soleil ; mais ici, les cas les plus simples seulement se rencontrent habituellement.

Soient la distance de la Terre au Soleil, la longitude héliocentrique de la Terre (qui diffère de 180° de la longitude géocentrique du Soleil), et enfin, les distances de la Terre à trois plans se coupant dans le Soleil à angles droits.

Si maintenant,

I. Le plan relatif aux est l’écliptique lui-même, et si et sont les longitudes des pôles des autres plans, auxquels les distances sont respectivement et on aura

II. Si le plan des est parallèle à l’équateur, et que et 90° soient respectivement les ascensions droites des pôles des autres plans, auxquels les distances sont respectivement et nous aurons, l’obliquité de l’écliptique étant désignée par ,

Les éditeurs des plus récentes tables solaires, le célèbre de Zach et Delambre, ont commencé à tenir compte de la latitude du Soleil, qui, produite par les perturbations des autres planètes et de la Lune, peut à peine atteindre une seconde. En désignant par la latitude héliocentrique de la Terre, qui sera toujours égale à la latitude du Soleil, mais affectée d’un signe contraire, nous aurons

Dans le cas I Dans le cas II

À la place de on pourra toujours ici substituer entièrement 1, et à la place de , l’angle exprimé en parties du rayon(*).

Les coordonnées ainsi trouvées sont celles relatives au centre de la Terre. Si sont les distances d’un point quelconque de la surface de la Terre à trois plans conduits par le centre de la Terre et parallèles à ceux menés par le centre du Soleil, les distances de ce point aux plans menés par le Soleil seront évidemment or les valeurs des coordonnées seront, dans l’un ou l’autre cas, facilement déterminées de la manière suivante. Soient le rayon du globe terrestre (ou le sinus de la parallaxe horizontale moyenne du Soleil), la longitude du point de la sphère céleste où passe la droite menée du centre de la Terre au point de sa surface, la latitude du même point, l’ascension droite, la déclinaison, et l’on aura

Dans le cas I Dans le cas II
.

Ce point de la sphère céleste répond évidemment au zénith même du point de la surface (si la Terre est, à la vérité, considérée comme une sphère), c’est pourquoi son ascension droite s’accorde avec l’ascension droite du milieu du Ciel ou avec le temps sidéral converti en degrés, et sa déclinaison avec l’élévation du pôle ; si l’on trouvait plus rigoureux d’avoir égard à la figure sphéroïdale de la Terre, il faudrait prendre pour l’élévation du pôle corrigée et pour la distance vraie du lieu au centre de la Terre, valeurs qui seraient déterminées par les règles connues. Au moyen de et la longitude et la latitude et se déduiront par les méthodes connues et que nous donnerons aussi plus loin ; il est au reste évident, que s’accorde avec la longitude du nonagésime et avec la latitude de ce point.

60

Si désignent les distances d’un corps céleste à trois plans rectangulaires passant par le Soleil, les distances de la Terre (soit du centre, soit d’un point de sa surface) à ces mêmes plans, il est évident que , , seront les distances du corps céleste à trois plans parallèles aux premiers, menés par la Terre ; et il existera entre ces distances, la distance de l’astre à la Terre et son lieu géocentrique[3], c’est-à-dire, le lieu de la projection sur la sphère céleste de la droite menée de la Terre à l’astre, la même relation que celle qui existe entre , , , la distance de l’astre au Soleil et son lieu héliocentrique. Soit la distance de l’astre à la Terre ; concevons dans la sphère céleste l’arc perpendiculaire abaissé du lieu géocentrique sur le grand cercle qui correspond au plan des distances , et soit la distance de l’intersection au pôle positif du grand cercle qui répond au plan des distances  ; et enfin, la longueur de cet arc perpendiculaire, ou la distance du lieu géocentrique au grand cercle correspondant aux distances . sera alors la latitude géocentrique ou la déclinaison, selon que le plan des distances est l’écliptique ou l’équateur ; d’un autre côté, sera la longitude géocentrique ou l’ascension droite, si désigne, dans le premier cas, la longitude, dans le second, l’ascension droite du pôle du plan des distances . C’est pourquoi l’on aura

Les deux premières équations donneront et et cette dernière quantité (que l’on doit considérer comme positive) combinée avec la troisième équation, donnera et .

61

Nous avons développé, dans les articles précédents, la méthode la plus facile pour déterminer le lieu géocentrique d’un astre relativement à l’écliptique ou à l’équateur, soit que ce lieu soit affranchi ou affecté de la parallaxe, et, de même, libre ou affecté de la nutation. Pour ce qui regarde la nutation, toute la différence résidera en ce que nous adoptions la position moyenne de l’équateur ou la position vraie, et par suite, que nous comptions, dans le premier cas, les longitudes à partir de l’équinoxe moyen, et dans le second, à partir de l’équinoxe vrai ; de même que l’obliquité moyenne de l’écliptique est employée dans le premier cas et l’obliquité vraie dans le second. Au reste, il est évident de soi-même que plus on introduit d’abréviations dans le calcul des coordonnées, plus il est nécessaire d’établir d’opérations préliminaires ; c’est pourquoi l’excellence de la méthode expliquée ci-dessus, pour déduire immédiatement les coordonnées de l’anomalie excentrique, se montrera principalement lorsqu’il faudra déterminer beaucoup de lieux géocentriques ; toutes les fois, au contraire, qu’il n’y aura seulement qu’un ou très-peu de lieux à calculer, il ne serait nullement avantageux d’entreprendre le calcul de tant de quantités auxiliaires. Dans un tel cas, il vaudra beaucoup mieux ne pas abandonner la méthode vulgaire, d’après laquelle l’anomalie vraie et le rayon vecteur se déduisent de l’anomalie excentrique ; de là, le lieu héliocentrique relativement à l’écliptique; ensuite la latitude et la longitude géocentrique, et enfin de là, l’ascension droite et la déclinaison. Afin qu’ici il ne paraisse rien manquer, nous expliquerons encore brièvement les deux dernières opérations.

62

Soient la longitude héliocentrique du corps céleste, sa latitude, la longitude géocentrique, sa latitude, sa distance au Soleil, sa distance à la Terre, et enfin, la longitude héliocentrique de la Terre, sa latitude et sa distance au Soleil. Comme nous ne posons pas nos formules pourront aussi être appliquées au cas où les lieux héliocentriques et géocentriques sont rapportés, non à l’écliptique, mais à tout autre plan ; il conviendra seulement de supprimer la dénomination de latitude et de longitude ; en outre, on pourra de suite tenir compte de la parallaxe si le lieu héliocentrique de la Terre est immédiatement rapporté, non au centre, mais à un point de sa surface. Posons, en outre, En rapportant maintenant les positions de l’astre et de la Terre dans l’espace à trois plans, dont un soit l’écliptique et dont le second et le troisième aient leurs pôles situés par les longitudes et les équations suivantes se déduisent de suite :

dans lesquelles l’angle est entièrement arbitraire.

La première et la seconde équation détermineront immédiatement et , d’où se réduira au moyen de la troisième ; à l’aide de et de nous aurons . Pour que maintenant, le travail du calcul s’exécute le plus commodément, nous déterminons l’angle arbitraire des trois manières suivantes :

I. En posant , nous ferons

et , , et seront obtenus par les formules

II. En posant , nous ferons

et l’on aura

III. En posant , on trouvera et par les équations

et ensuite , au moyen de l’équation donnée ci-dessus. Le logarithme de la fraction est calculé facilement, si l’on pose , d’où l’on a

De cette manière la méthode III, pour la détermination de , est un peu plus courte que I et II ; mais pour les autres opérations nous pensons que celles-ci doivent être préférées à la dernière,

63

Comme exemple nous continuons plus avant le calcul de l’art. 51 avancé jusqu’au lieu héliocentrique. Supposons que la longitude héliocentrique de la Terre qui correspond à ce lieu soit et nous posons la latitude Nous avons d’après cela, , , et par suite d’après la méthode II,

9,6729813  9,6526258
9,4758653   0,4493925
9,9796445   0,5506075
9,1488466
9,7408421
de là 14° 21′ 6,75″   d’où 352° 34′ 22,23″
9,7546147   d’où 0,0797283
8,8020996   d’où 9,9973144
9,0474879   d’où 0,0824139
6° 21′ 55,07″

Selon la méthode III, de , on a et alors,

0,4441091
9,1848938
9,6290029
23° 03′ 16,79″0 d’où 352° 34′ 22,225″
15° 37′ 39,015″
64

À l’égard du problème de l’art. 62, nous ajoutons encore les observations suivantes :

I. En posant dans la seconde opération donnée dans cet article, on trouve

La première équation ou la seconde peut être commodément appliquée à la confirmation du calcul, si l’on emploie la méthode I ou la méthode II de l’art. 62. On a ainsi, dans notre exemple,

9,4758653  31° 45′ 26,82″
9,7546117
  9,7212536
9,7212536

II. Le Soleil et les deux points, dans le plan de l’écliptique, qui sont les projections de la position de l’astre et de la position de la Terre, forment un triangle plan dont les côtés sont et les angles opposés, soit ou de cette considération découlent immédiatement les relations établies dans I.

III. Le Soleil, la position vraie du corps céleste dans l’espace, et le lieu vrai de la Terre formeront un autre triangle dont les côtés seront c’est pourquoi, si les angles opposés sont respectivement désignés par et , on aura

Le plan de ce triangle déterminera, dans la sphère céleste, un grand cercle dans lequel le lieu héliocentrique de la Terre, le lieu héliocentrique de l’astre et son lieu géocentrique seront situés, et de telle sorte que la distance du second au premier, du troisième au second et du troisième au premier, comptés selon la même direction, seront respectivement

IV. Les équations différentielles suivantes sont obtenues soit au moyen des variations différentielles connues d’un triangle plan, soit aussi facilement, à l’aide des formules de l’art. 62 :

où les termes qui contiennent doivent être multipliés par 206265, ou les autres divisés par ce nombre, si les variations angulaires sont exprimées en secondes.

V. Le problème inverse, c’est-à-dire la détermination du lieu héliocentrique, au moyen du lieu géocentrique, est entièrement analogue au problème développé ci-dessus ; il serait donc superflu de s’en occuper davantage. Toutes les formules de l’art. 62, en effet, s’appliquent aussi à ce problème, pourvu que toutes les quantités qui concernent la position héliocentrique de l’astre soient remplacées par celles qui se rapportent à la position géocentrique, qu’à la place de on substitue respectivement ou, ce qui est la même chose, qu’à la place du lieu héliocentrique de la Terre on considère le lieu géocentrique du Soleil.

65

Quoique dans le cas où très-peu de lieux géocentriques seulement doivent être déterminés d’après les éléments donnés, il soit à peine avantageux d’employer tous les artifices développés ci-dessus, à l’aide desquels on peut passer immédiatement de l’anomalie excentrique à la latitude et à la longitude géocentriques, ou même à l’ascension droite et à la déclinaison, puisque les avantages qui en résultent seraient absorbés par la multitude de quantités auxiliaires à calculer préalablement ; néanmoins, la combinaison de la réduction à l’écliptique avec le calcul de la longitude et de la latitude offrira un avantage qu’il ne faut pas mépriser. Si, en effet, on emploie pour plan des coordonnées l’écliptique même, et que les pôles des plans relatifs aux coordonnées soient situés par une longitude , les coordonnées sont facilement déterminées sans aucune nécessité de quantités auxiliaires.

On aura, en effet,

Toutes les fois que , on a et .

D’après ces formules, notre exemple est résolu par les nombres suivants :

0,3259877  9,9980979
9,9824141   9,9226027
9,4454714   9,7384353
0,3084018  9,9207006
9,7714591
9,9885266
9,3557570
9,7599857   9,7365332  
9,1272161   0

De là, on a

0,0795906
8,4807165
d’où 181° 26′ 33,49″n.  352° 34′ 22,22″n
0,0797283
9,0474878   6° 21′ 55,06″n
66

L’ascension droite et la déclinaison d’un point quelconque de la sphère céleste se déduisent de sa latitude et de sa longitude par la résolution d’un triangle sphérique formé par les arcs qui joignent les pôles de l’écliptique, de l’équateur et ce point. Soient l’obliquité de l’écliptique, la longitude, la latitude, l’ascension droite, la déclinaison, les côtés du triangle seront alors on pourra prendre et pour angles opposés au second et au troisième côté (si nous concevons la forme du triangle sphérique dans sa plus grande généralité) ; nous poserons le troisième angle opposé au côté .

Nous aurons alors, par les formules de l’art. 54 :

Les deux premières équations donneront et les deux dernières et De et on aura en même temps et de ou dont l’accord servira à confirmer le calcul, on déterminera et de .

La détermination des angles par leurs tangentes n’est pas sujette à ambiguïté, puisque non-seulement le sinus, mais aussi le cosinus de l’angle doit être positif.

Les variations différentielles des quantités obtenues d’après les variations de et selon les principes connus, sont

67

On peut déduire une autre méthode, pour résoudre le même problème, des équations

L’angle auxiliaire est déterminé par l’équation

et l’on aura

équations auxquelles on peut ajouter, pour la confirmation du calcul,

,  ou ,

L’ambiguïté qui se présente dans la détermination de par la seconde équation est levée par cette considération, que et doivent avoir les mêmes signes.

Cette méthode est moins prompte si, en outre de et on désire aussi La formule la plus commode pour la détermination de cet angle sera alors

.

Mais ne peut être calculé exactement par cette relation toutes les fois que diffère peu de l’unité ; de plus, il existera l’incertitude de savoir s’il faut prendre entre et 180°, ou entre 180° et 360°. Le premier inconvénient est rarement de quelque importance, surtout puisque pour calculer les expressions différentielles, on n’a pas soin d’une précision extrême dans la valeur de  ; mais cette incertitude est facilement écartée au moyen de l’équation

,

qui fait voir que l’on doit prendre entre et 180° ou entre 180° et 360°, selon que est plus grand ou plus petit que . Il est évident que cet examen n’est pas nécessaire toutes les fois que l’un ou l’autre des angles et ne dépasse pas la limite 66° 32′ ; alors sera, en effet, toujours positif. Au reste, la même équation indiquée dans le cas précédent pourra être employée pour une détermination plus exacte de , si on le trouve avantageux.

68

La solution du problème inverse, c’est-à-dire, la détermination de la longitude et de la latitude d’après l’ascension droite et la déclinaison, est obtenue par le même triangle sphérique ; c’est pourquoi, les formules développées ci-dessus seront disposées dans ce but par la seule permutation de en et de en . À cause de leur fréquent usage, on ne se repentira pas de placer ici ces formules.

D’après la méthode de l’art. 66, nous aurons

Au contraire, ainsi que dans l’autre méthode, art. 67, nous déterminerons l’angle auxiliaire par l’équation

,

et l’on aura

Pour la confirmation du calcul on pourra y joindre

.

Pour la détermination de , on emploiera, de même que dans l’article précédent, les équations

Les variations différentielles de et de seront données par les formules suivantes :

69

Comme exemple, nous calculerons la latitude et la longitude au moyen de l’ascension droite , la déclinaison , l’obliquité de l’écliptique .

On a donc , ,  ; puis de là,

9,8656826  9,8326803
9,7860418   9,6838112
9,8985222   9,9423572
9,6511238
9,7750375
d’où 216° 56′ 05,39″ ; 9,8723171
9,5164915
9,7636042
d’où 209° 30′ 49,94″ ; 9,8239669

On a donc,  ; , ou, ce qui revient au même, ,  ; du logarithme sinus, on obtient pour l’angle  ; du logarithme cosinus on a , et par la tangente, dont le logarithme est la différence des deux, on trouve  ; de là .

D’après l’autre méthode, le calcul se fait de la manière suivante :

9,1893062  0,3626190
8,8719792   9,8789703
0,3173270   8,8731869
64° 17′ 6,83″n.   9,1147762
40° 49′ 7,57″n.   352° 34′ 44,50″n.
  9,1111232
  9,9363874
  9,0475106
  6° 21′ 56,26″

Pour déterminer l’angle nous avons le double calcul

  9,6001144n    9,6001144n
  9,9937924     9,9963470
0,0026859   0,0051313
  9,6015927     9,6015927
d’où  66° 26′ 55,35″n
70

Afin qu’il ne manque rien au calcul des lieux géocentriques, il faut encore ajouter certaines quantités relatives à la parallaxe et à l’aberration.

Nous avons déjà développé ci-dessus la méthode d’après laquelle le lieu affecté de la parallaxe, c’est-à-dire correspondant à un point quelconque de la surface terrestre, peut être immédiatement déterminé avec la plus grande facilité ; mais comme dans la méthode vulgaire enseignée dans les art. 62 et suivants, le lieu géocentrique est habituellement rapporté au centre de la Terre, cas dans lequel il est indépendant de la parallaxe, il sera convenable d’ajouter une méthode particulière pour la détermination de la parallaxe, qui est la différence entre l’un et l’autre lieu.

Soient et la longitude et la latitude d’un corps céleste considéré du centre de la Terre ; et ces mêmes coordonnées pour un point quelconque de sa surface ; la distance de l’astre au centre de la Terre, la distance au point de la surface ; enfin, soient la longitude et la latitude qui correspondent au zénith de ce point dans la sphère céleste, et soit le rayon terrestre désigné par Il est maintenant évident que toutes les équations de l’art. 62 seront aussi applicables à ce lieu, mais pourront être notablement modifiées, puisque exprime une quantité qui s’annule presque en présence de et . Au reste, les mêmes équations pourront évidemment servir si expriment les ascensions droites au lieu des longitudes, et les déclinaisons au lieu des latitudes.

Dans ce cas, seront les parallaxes d’ascension droite et de déclinaison, mais dans l’autre, les parallaxes de longitude et de latitude. Si maintenant est traité comme une quantité de premier ordre, seront du même ordre, et, les ordres supérieurs étant négligés, on déduira facilement, d’après les formules de l’art. 62 :

I.
II.
III.

En prenant l’angle auxiliaire de telle sorte que l’on ait

les équations II et III prennent la forme suivante :

II.
   
III.
   

Il est au reste évident, que dans I et II, afin que et soient obtenues en secondes, on devra prendre pour la parallaxe moyenne du Soleil exprimée en secondes ; mais dans III, on devra prendre pour la même parallaxe divisée par 206265. Enfin, lorsque dans le problème inverse, on voudra passer du lieu affecté de la parallaxe au lieu délivré de cette parallaxe, on pourra, sans nuire à la précision, employer et dans la valeur des parallaxes, à la place de et .

Exemple. Soient l’ascension droite du Soleil pour le centre de la Terre, la déclinaison la distance ensuite, le temps sidéral pour un certain point de la surface céleste, exprimé en degrés l’élévation du pôle de ce lieu, la parallaxe moyenne du Soleil. On demande le lieu du Soleil vu de ce point, et sa distance à ce même point.

  0,93450    0,93450
  9,84593    9,85299
0,00418   0,00418
0,01679   0,10317  
  9,78508     9,77152
  0,58648     0,66636
3,86″n   4,64″n
220° 46′ 48,51″n   15° 49′ 48,58″n
  0,00706     0,66636
  9,89909     0,13522  
  0,10797     9,99582
127° 57′ 00″     4,68557
143° 46′ 44″     5,48297
0,0000304
0,9904615
71

L’aberration des étoiles, et aussi cette partie de l’aberration des planètes et des comètes qui est due au mouvement seul de la Terre, provient de ce que le tube de la lunette est entraîné par le mouvement de la Terre pendant que le rayon de lumière parcourt l’axe optique. La position observée d’un corps céleste (qui est dite la position apparente ou affectée de l’aberration) est déterminée par la direction de l’axe optique de la lunette établie de manière que le rayon de lumière émanant de l’astre atteigne dans sa route l’une et l’autre extrémité de cet axe ; mais cette position est différente de la vraie direction du rayon de lumière dans l’espace. Considérons les deux instants et où le rayon de lumière atteint l’extrémité antérieure (le centre optique de l’objectif), et l’extrémité postérieure (le foyer de l’objectif) ; soient et la position de ces deux extrémités dans l’espace au premier instant, et au second. Il est alors évident que la droite est la véritable direction du rayon de lumière dans l’espace, mais que la droite ou (que l’on peut considérer comme parallèles) correspond à la position apparente ; on voit au reste, sans difficulté, que la position apparente ne dépend pas de la longueur du tube. La différence entre la direction des droites et est l’aberration telle qu’elle existe pour les étoiles fixes ; nous passons ici sous silence la manière de la calculer, comme étant connue. Mais pour les astres errants cette différence n’est pas l’aberration complète ; la planète, en effet, pendant qu’un rayon de lumière émané d’elle arrive à la Terre, change elle-même de lieu ; c’est pourquoi la direction de ce rayon ne répond pas au vrai lieu géocentrique au moment de l’observation. Supposons que le rayon de lumière qui rencontre le tube à l’instant soit sorti de la planète à l’instant et représentons par la position de la planète dans l’espace au moment et par sa position au moment soit enfin le lieu de l’extrémité antérieure de l’axe du tube à l’instant Il est alors évident que,

1o La droite marque le lieu vrai de la planète au moment

2o La droite le lieu vrai à l’époque

3o La droite ou la droite le lieu apparent à l’instant ou (la différence entre ces deux instants peut être considérée comme une quantité infiniment petite) ;

4o La droite le même lieu apparent corrigé de l’aberration des fixes.

Maintenant les points , , se trouvent en ligne droite et les parties seront proportionnelles aux intervalles de temps si à la vérité le mouvement de la lumière s’effectue avec une vitesse uniforme. L’intervalle de temps à cause de la prodigieuse vitesse de la lumière, est toujours une quantité très-petite pendant laquelle le mouvement de la Terre peut être considéré comme rectiligne et uniforme ; ainsi se trouveront aussi en ligne droite et les parties seront aussi proportionnelles aux intervalles Il est facile de conclure de là que les droites sont parallèles, et par suite que le premier lieu est identique avec le troisième. Le temps sera le produit de la distance par 493s, temps que met la lumière à parcourir la distance moyenne de la Terre au Soleil, que nous prenons pour unité. Dans ce calcul il sera permis de prendre ou à la place de la distance , puisque la différence ne peut être d’aucune importance.

De ces principes découlent trois méthodes pour déterminer, pour une époque quelconque le lieu apparent d’une planète ou d’une comète ; il sera convenable de préférer tantôt l’une de ces méthodes tantôt l’autre.

I. Que l’on retranche de l’époque proposée le temps que met la lumière à venir de la planète à la Terre, on obtiendra ainsi l’époque réduite pour laquelle le lieu vrai calculé de la manière ordinaire sera identique avec le lieu apparent pour l’époque Pour le calcul de la réduction du temps il faut connaître la distance de la planète à la Terre ; le plus souvent des moyens commodes ne manqueront pas pour cet objet, comme, par exemple, une éphéméride calculée légèrement ; autrement, il suffira de déterminer de la manière habituelle par un calcul préliminaire, mais en négligeant une minutieuse précision, la distance vraie pour l’époque

II. Calculer pour l’époque proposée le lieu vrai et la distance, de celle-ci la réduction du temps et de là, au moyen du mouvement diurne (en longitude et latitude ou en ascension droite et déclinaison), la réduction du lieu vrai à l’époque

III. Calculer la position héliocentrique de la Terre pour l’époque mais le lieu héliocentrique de la planète pour le temps ensuite, par la combinaison ordinaire de ces quantités, le lieu géocentrique de la planète, qui, augmenté de l’aberration des fixes (obtenue par la méthode connue ou déduite des tables), fournira le lieu apparent demandé.

La seconde méthode, qui sert habituellement dans la pratique, se recommande en vérité avant les autres, en ce qu’il n’ est jamais besoin d’un double calcul pour la détermination de la distance ; elle exige cependant un travail incommode, en raison duquel elle ne peut être choisie, à moins que plusieurs positions voisines n’aient été calculées ou n’aient été obtenues à l’aide d’observations ; autrement, en effet, le mouvement diurne ne peut pas être considéré comme donné.

Le désavantage par lequel sont affectées la première et la troisième méthode est entièrement écarté toutes les fois que plusieurs lieux voisins sont à calculer. Aussitôt, en effet, que l’on aura obtenu quelques distances, on pourra déduire très-facilement, par les moyens habituels et avec une précision suffisante, les distances suivantes. Au reste, si la distance est connue, la première méthode sera préférée le plus souvent à la troisième, parce qu’il ne sera pas nécessaire d’avoir égard à l’aberration des fixes ; mais si l’on veut avoir recours à un double calcul, la troisième se recommande en ce que, dans le second calcul, le lieu de la Terre est au moins conservé.

Maintenant se présentent d’elles-mêmes les questions relatives au problème inverse, c’est-à-dire déduire la position vraie de la position apparente. D’après la méthode I, on conservera le lieu sans le modifier, mais on convertira le temps , auquel correspond le lieu proposé comme position apparente, en temps réduit auquel correspondra le même lieu, mais considéré comme position vraie. D’après la méthode II, on conservera l’époque mais on ajoutera au lieu proposé le mouvement dans l’intervalle comme si l’on voulait réduire ce lieu à l’époque D’après la méthode III, on ’ considérera le lieu proposé corrigé de l’aberration des fixes comme un lieu vrai relatif à l’époque mais la position vraie de la Terre correspondant à l’époque devra être considérée comme si elle appartenait à l’époque L’utilité de la troisième se fera voir plus clairement dans le second livre.

Enfin, pour ne rien oublier, observons encore que le lieu du Soleil est aussi affecté par l’aberration comme le lieu de la planète ; mais puisque non-seulement la distance à la Terre, mais aussi le mouvement diurne est presque constant, l’aberration elle-même acquiert toujours une valeur à peu près constante, égale au mouvement du Soleil en s, et par suite cette quantité doit être retranchée de la longitude vraie pour qu’on obtienne la longitude apparente moyenne. La valeur exacte de l’aberration est en raison composée de la distance et du mouvement diurne, ou, ce qui revient au même, en raison inverse de la distance ; par suite la valeur moyenne doit être diminuée de pour l’apogée, et augmentée d’autant pour le périgée. Nos tables solaires renferment déjà l’aberration constante c’est pourquoi, pour obtenir la longitude vraie, il sera nécessaire d’ajouter à celle donnée dans les tables.

72

Nous terminerons cette section par certains problèmes qui sont d’un fréquent usage dans la détermination des orbites des planètes et des comètes. Et d’abord nous reviendrons à la parallaxe dont nous avons appris, dans l’art. 70, à affranchir le lieu observé. Puisqu’une telle réduction au centre de la Terre suppose connue, au moins approximativement, la distance de la planète à la Terre, elle ne peut être effectuée toutes les fois que l’orbite de la planète observée est encore entièrement inconnue. Dans ce cas cependant, il est aussi permis d’atteindre au moins le but pour lequel la réduction au centre de la Terre est entreprise, puisque plusieurs formules acquièrent une simplicité et une justesse plus grandes, lorsque ce centre est situé ou est supposé situé dans le plan de l’écliptique, qu’elles n’obtiendraient si l’on rapportait l’observation à un point placé en dehors de l’écliptique. C’est pourquoi, d’après cette considération, il importe peu que l’observation soit réduite au centre de la Terre ou à quelque autre point dans le plan de l’écliptique. Il est maintenant évident que si dans ce but on choisit le point d’intersection du plan de l’écliptique avec la droite menée de la planète au lieu vrai de l’observation, l’observation elle-même n’aura besoin d’aucune autre réduction, puisque la planète doit être vue de la même manière de tous les points de cette droite[4] : c’est pourquoi il sera permis de substituer ce point comme lieu fictif de l’observation à la place du lieu vrai. Nous déterminons la position de ce point de la manière suivante :

Soient la longitude du corps céleste, la latitude, la distance, tout étant rapporté au lieu vrai de l’observation à la surface de la Terre, au zénith duquel répond la longitude et la latitude soient ensuite le demi-diamètre de la Terre, la longitude héliocentrique du centre de la Terre, sa latitude, sa distance au Soleil ; enfin, la longitude héliocentrique du lieu fictif, sa distance au Soleil, sa distance au corps céleste. désignant un angle arbitraire, les équations suivantes sont alors établies sans difficulté :

En posant donc

I.

on aura

II.
III.
IV.

Des équations II et III, et pourront être déterminés, et au moyen de IV, l’intervalle à ajouter à l’époque de l’observation, qui sera, en secondes, s.

Ces équations sont exactes et générales, et pourront aussi être employées quand, le plan de l’équateur étant substitué au plan de l’écliptique, désignent les ascensions droites, les déclinaisons.

Mais dans le cas dont il s’agit ici particulièrement, c’est-à-dire lorsque le lieu fictif doit être situé dans l’écliptique, l’exiguïté des quantités permet encore quelque réduction des formules précédentes. On pourra, en effet, prendre la parallaxe moyenne du Soleil à la place de pour 1 pour et pour En faisant alors les formules précédentes prennent la forme suivante :

I.
II.
III.

doivent, à vrai dire, être ici exprimés en parties du rayon, mais il est évident que si ces angles sont exprimés en secondes, les équations I et III pourront être conservées sans changement ; mais à l’équation II, on devra substituer

Enfin, dans la formule III, à la place du dénominateur on pourra, sans erreur sensible, employer toujours Mais les angles étant exprimés en secondes, la réduction du temps devient

.
73

Exemple. Soient , , , Voici maintenant le calcul :

9,99951n  0,93450n
9,69020   9,86330
9,68971  0,79780

De là

0,83040 
1,05873
1,88913  
0,93450   1,88913
9,83473   4,68557
4,68557   9,97886
9,99040     6,55356
  5,44520
0,0000279n   0,0003577n

De là on obtient On a ensuite :

0,76923n  1,88913
9,31794   9,48371
0,00032   0,00032
  0,08749     1,37316
1,22″00n   23,61″0n  

d’où l’on obtient . On a enfin :

1,88913
4,68557
2,69285
0,00165
  9,26920, d’où la réduction du temps 0s,186,

et, par suite, est sans importance.

74

L’autre problème : De la position géocentrique d’un corps céleste et de la position du plan de son orbite, déduire le lieu héliocentrique dans l’orbite, est semblable au précédent en ce qu’il dépend aussi de l’intersection d’une droite menée entre la Terre et le corps céleste, avec un plan de position donnée. La solution la plus convenable se déduit des formules de l’art. 65, où la signification des lettres était celle-ci :

la longitude de la Terre, la distance au Soleil, nous posons la latitude (puisque le cas où elle n’est pas peut facilement se réduire à celui-là par l’art. 72), d’où la longitude géocentrique de l’astre, la latitude, la distance à la Terre, la distance au Soleil, l’argument de la latitude, la longitude du nœud ascendant, l’inclinaison de l’orbite. Nous avons ainsi les équations

I. ,
II. ,
III. .

En multipliant l’équation I par , II par , III par , on obtient en ajoutant les produits,

d’où

IV.

En multipliant aussi I par , II par , et ajoutant les produits, on trouve

V.

L’ambiguïté qui existe dans la détermination de par l’équation IV est naturellement levée par l’équation III, qui montre que doit être compris entre 0 et 180°, ou entre 180° et 360°, selon que la latitude est positive ou négative ; mais si l’équation V montre que l’on doit prendre 0 ou 180° selon que et ont des signes différents ou le même signe.

On peut réduire le calcul numérique des formules IV et V de différentes manières, par l’introduction d’angles auxiliaires. Comme par exemple,

en posant , on a
en posant , on a

De même l’équation V prend une forme plus élégante en introduisant l’angle dont la tangente , ou De même que nous avons obtenu la formule V par la combinaison des équations I et II, nous parvenons à la suivante en combinant les équations II et III :

et de même par la combinaison des équations I, III à celle-ci :

.

Ainsi qu’on l’a fait pour V, on peut rendre plus simples ces deux relations par l’introduction d’angles auxiliaires. Les solutions qui découlent des relations précédentes se trouvent réunies et éclaircies par un exemple dans « Von Zach’s Monatliche Correspondenz, vol. V, p. 540 », c’est pourquoi nous supprimons ici un développement plus étendu. Si, en outre de et on désire aussi la distance elle pourra être déterminée par l’équation III.

75

Une autre solution du problème précédent résulte de l’observation faite dans l’art. 64, III, que le lieu héliocentrique de la Terre, le lieu géocentrique du corps céleste et son lieu héliocentrique sont situés sur un même grand cercle de la sphère. Soient (fig. 3) respectivement ces lieux ; ensuite, la position du nœud ascendant ; les portions de l’écliptique et de l’orbite, un arc perpendiculaire à l’écliptique abaissé du point arc qui sera donc De là, au moyen de l’arc on déterminera l’angle ainsi que l’arc Ensuite, l’angle l’angle et le côté sont donnés dans le triangle sphérique d’où l’on obtiendra les deux autres côtés et On aura enfin

et, .
76

Nous avons enseigné, dans l’art. 52, le moyen d’exprimer les variations différentielles de la longitude et de la latitude héliocentriques et de la distance raccourcie, d’après les variations de l’argument de la latitude de l’inclinaison et du rayon vecteur et après cela nous en avons déduit (art. 64, IV) les variations de la longitude et de la latitude géocentriques et par la combinaison de ces formules, et peuvent donc être exprimées en fonction de et Mais il sera utile de montrer comment dans ce calcul on peut aussi omettre la réduction du lieu héliocentrique à l’écliptique, de même que dans l’art. 65 nous avons immédiatement déduit le lieu géocentrique du lieu héliocentrique dans l’orbite. Pour que les formules en deviennent plus simples, nous négligeons la latitude de la Terre, puisque cette latitude ne peut certainement avoir d’effet sensible dans les formules différentielles. Nous avons par conséquent les formules suivantes dans lesquelles nous remplaçons, par abréviation, par nous écrivons aussi, comme ci-dessus, pour

Il vient, en les différentiant,

de là, par élimination,

Si, dans ces formules, nous mettons à la place de leurs valeurs, et deviendront exprimées en fonction de et ensuite, à cause de les différentielles partielles de seront ainsi qu’il suit :

I. .
II. .
III. .
IV. .
V.
VI.
VII. .
VIII. .

Les formules IV et VIII se présentent déjà sous la forme la plus commode pour le calcul ; mais les formules I, III et IV sont mises, par des substitutions évidentes, sous une forme plus élégante, à savoir :

I. .
III. .
V.

Enfin, les autres formules II, VI, VII se transforment aussi en expressions plus simples par l’introduction de certains angles auxiliaires ; ce qui se fait le plus commodément de la manière suivante. Les angles auxiliaires et sont déterminés par les formules

On a alors, en même temps,

Maintenant, puisque l’incertitude qui existe dans la détermination de et de peut être écartée à volonté, il est évident qu’on peut le faire en admettant que l’on ait

,

et par suite,

.

Ceci posé, les formules II, VI, VII se changent en les suivantes :

II. .
VI.
VII. .

Ces transformations, relativement aux formules II et VII, n’arrêteront personne ; mais, en ce qui regarde la formule VI, quelque explication ne sera pas superflue.

En substituant, en effet, dans la formule VI d’abord à la place de , on trouve

On a maintenant,

de là, la première partie de l’expression précédente se change en

On a de même,

d’où la dernière partie de l’expression se change en

De là, résulte complètement l’expression VI.

L’angle auxiliaire peut aussi servir à transformer la formule I, qui, par l’introduction de cet angle, prend la forme

I∗∗.

En comparant cette formule à la formule I, on conclut que

 ;

de là aussi, une forme un peu plus simple peut être donnée à la formule II, à savoir :

II∗∗.

Pour que la formule VI soit simplifiée encore davantage, il est nécessaire d’introduire un nouvel angle auxiliaire, ce qui peut se faire de deux manières, soit en posant

, ou  ,

d’où résulte

VI∗∗.

Les quantités auxiliaires ne sont pas, du reste, purement fictives, et il serait facile d’assigner ce que représente chacune d’elles dans la voûte céleste ; plusieurs des équations précédentes peuvent même être données plus élégamment par le moyen d’arcs ou d’angles de la sphère, auxquels nous nous arrêterons d’autant moins ici qu’ils ne rendent pas superflues, pour le calcul numérique lui-même, les formules développées ci-dessus.

77

Les formules développées dans l’article précédent, jointes à celles que nous avons données dans les art. 15, 16, 20, 27, 28 pour les différents genres de section coniques, fourniront toutes les relations qui sont nécessaires pour le calcul des variations différentielles d’un lieu géocentrique causées par les variations de chacun des éléments. Pour mieux éclaircir ces principes, nous résumerons l’exemple traité ci-dessus dans les art. 13, 14, 51, 63, 65. Et d’abord, nous exprimerons et en fonctions de d’après la méthode de l’article précédent, lequel calcul se fait ainsi :

8,10113n  8,40099  9,41932
9,98853 9,36723 9,35502
8,41260 7,76822 0,06370
001° 28′ 52″ 179° 39′ 50″ 049° 11′ 13″
165° 17′ 08″ 186° 01′ 45″ 136° 50′ 32″
I. II. III.
9,72125 () 9,63962 9,99986
9,99810 0,58068 9,04749
9,92027 0,22030   9,04755
() 9,63962
9,67401
9,31363
IV. V. VI∗∗.
9,91837 (∗∗) 9,84793 0,24357
9,92956 9,04212 9,40484
(∗∗) 9,84793 9,67401 9.86301
  8,56406   0,12099
9,63241
VII. VIII.
9,75999 () 9,63962
9,99759 9,04212
9,91759 8,68174
0,00001
9,67518

L’ensemble de ces différentes valeurs donne

Il sera à peine nécessaire de rappeler ici l’observation que nous avons déjà souvent faite, à savoir, que les variations sont exprimées en parties du rayon(*), ou que les coefficients de doivent être multipliés par 206265″, si ces variations sont considérées comme exprimées en secondes.

En désignant maintenant la longitude du périhélie (qui dans notre exemple est 52° 18′ 9,30″) par , et l’anomalie vraie par la longitude dans l’orbite sera et par suite au moyen de cette valeur substituée dans les formules précédentes, et seront obtenues en fonction de et Il ne reste donc plus maintenant qu’à exprimer et d’après la règle des art. 15 et 16, en fonction des variations différentielles des éléments elliptiques[5].

On avait dans notre exemple, art. 14 :

,
0,19290  0,42244
9,98652 9,40320
0,17942   9,84931
9,67495
1,80085n
0,06018n
  1,74067
0,24072 0,42214
0,19290 9,98652
9,76634 9,84966
0,19996 0,25862

De là, en ajoutant

En substituant des valeurs dans les formules précédentes, il vient

Si le moment auquel répond le lieu calculé est supposé distant de jours de l’époque, et que l’on représente la longitude moyenne de l’époque par et le mouvement diurne par on aura et par suite, Dans notre exemple, le temps qui correspond au lieu calculé est le octobre de l’année 1804, sous le méridien de Paris ; si donc on prend pour époque le commencement de l’année 1805, on a la longitude moyenne pour cette époque était et le mouvement diurne . En substituant, dans les formules trouvées tout à l’heure, à la place de sa valeur, les variations différentielles du lieu géocentrique exprimées en fonction des variations seules des éléments, sont ainsi qu’il suit :

Si la masse du corps céleste est négligée ou au moins considérée comme connue, et seront dépendants l’un de l’autre, et l’on pourra, par suite, éliminer de nos formules ou Puisqu’en effet, d’après l’art. 6, on a

,

on aura

,

formule dans laquelle, si est exprimé en parties du rayon, il faudra aussi exprimer de la même manière. On trouve ainsi, dans notre exemple :

2,91635
4,68557
0,17609
9,57756
7,35557,

ou

,  ou   ;

cette valeur étant substituée dans nos formules, la dernière forme s’obtient enfin :

Dans le développement de ces formules, nous avons supposé que toutes les différentielles sont exprimées en parties du rayon, mais il est évident qu’en raison de l’homogénéité de tous les termes, les mêmes formules serviront encore si toutes ces différentielles sont exprimées en secondes.


  1. C’est-à-dire, dans l’intérieur de la surface de la sphère que notre figure représente.
  2. (*) Note wikisource : les parties du rayon sont des radians.
  3. Dans le sens le plus large ; car, à proprement parler, cette expression se rapporte au cas où la droite est menée par le centre de la Terre.
  4. Si l’on voulait une extrême précision, il faudrait ajouter ou soustraire du temps proposé l’intervalle de temps que met la lumière à aller du lieu vrai de l’observation au lieu fictif, ou réciproquement, s’il s’agit, à la vérité, de lieux affectés de l’aberration ; mais cette différence peut à peine être de quelque importance, à moins que la latitude ne soit très-petite.
  5. On s’apercevra immédiatement que la lettre ne représente plus, dans le calcul suivant, notre angle auxiliaire ; mais (comme dans la section Ire) l’anomalie moyenne.