Science et méthode/Livre II, § V

Science et méthode (Édition définitive) (1908)
E. Flammarion (p. 202-225).

== I == Les logisticiens ont cherché à répondre aux c onsidérations qui précèdent. Pour cela il leur a fallu transformer la logistique, et M. Russell en particulier a modifié sur certains points ses vues primitives. Sans entrer dans les détails du débat, je voudrais revenir sur les deux questions les plus importantes à mon sens ; les règles de la logistique ont-elles fait leurs preuves de fécondité et d’infaillibilité ? Est-il vrai qu’elles permettent de démontrer le principe d’induction complète sans aucun appel à l’intuition.


II. L’infaillibilité de la logistique. modifier

En ce qui concerne la fécondité, il semble que M. Couturat se fasse de naïves illusions. La Logistique, d’après lui, prête à l’invention « des échasses et des ailes » et à la page suivante : « Il y a dix ans que M. Peano a publié la première édition de son Formulaire. »

Comment, voilà dix ans que vous avez des ailes, et vous n’avez pas encore volé !

J’ai la plus grande estime pour M. Peano, qui a fait de très jolies choses (par exemple sa courbe qui remplit toute une aire) ; mais enfin il n’est allé ni plus loin, ni plus haut, ni plus vite que la plupart des mathématiciens aptères, et il aurait pu faire tout aussi bien avec ses jambes.

Je ne vois au contraire dans la logistique que des entraves pour l’inventeur ; elle ne nous fait pas gagner en concision, loin de là, et s’il faut 27 équations pour établir que 1 est un nombre, combien en faudra-t-il pour démontrer un vrai théorème. Si nous distinguons, avec M. Whitehead, l’individu x, la classe dont le seul membre est x et qui s’appellera ix, puis la classe dont le seul membre est la classe dont le seul membre est x et qui s’appellera iix, croit-on que ces distinctions, si utiles qu’elles soient, vont beaucoup alléger notre allure ?

La Logistique nous force à dire tout ce qu’on sous-entend d’ordinaire ; elle nous force à avancer pas à pas ; c’est peut-être plus sûr, mais ce n’est pas plus rapide.

Ce ne sont pas des ailes que vous nous donnez, ce sont des lisières. Et alors nous avons le droit d’exiger que ces lisières nous empêchent de tomber. Ce sera leur seule excuse. Quand une valeur ne rapporte pas de gros intérêts, il faut au moins que ce soit un placement de père de famille.

Doit-on suivre vos règles aveuglément ? Oui, sans quoi ce serait l’intuition seule qui nous permettrait de discerner entre elles ; mais alors il faut qu’elles soient infaillibles ; ce n’est que dans une autorité infaillible qu’on peut avoir une confiance aveugle. C’est donc une nécessité pour vous. Vous serez infaillibles ou vous ne serez pas.

Vous n’avez pas le droit de nous dire : « Nous nous trompons, c’est vrai, mais vous vous trompez aussi ». Nous tromper, pour nous, c’est un malheur, un très grand malheur, pour vous c’est la mort.

Ne dites pas non plus : est-ce que l’infaillibilité de l’arithmétique empêche les erreurs d’addition ; les règles du calcul sont infaillibles, et pourtant on voit se tromper ceux qui n’appliquent pas ces règles ; mais en revisant leur calcul, on verra tout de suite à quel moment ils s’en sont écartés. Ici ce n’est pas cela du tout ; les logisticiens ont appliqué leurs règles, et ils sont tombés dans la contradiction ; et cela est si vrai qu’ils s’apprêtent à changer ces règles et à « sacrifier la notion de classe ». Pourquoi les changer si elles étaient infaillibles ?

« Nous ne sommes pas obligés, dites-vous, de résoudre hic et nunc tous les problèmes possibles. » Oh, nous ne vous en demandons pas tant ; si en face d’un problème, vous ne donniez aucune solution, nous n’aurions rien à dire ; mais au contraire vous nous en donnez deux et qui sont contradictoires et dont par conséquent une au moins est fausse, et c’est cela qui est une faillite.

M. Russell cherche à concilier ces contradictions, ce qu’on ne peut faire, d’après lui « qu’en restreignant ou même en sacrifiant la notion de classe. » Et M. Couturat, escomptant le succès de cette tentative, ajoute : « Si les logisticiens réussissent là où les autres ont échoué, M. Poincaré voudra bien se rappeler cette phrase, et faire honneur de la solution à la Logistique. »

Mais non : La Logistique existe, elle a son code qui a déjà eu quatre éditions ; ou plutôt c’est ce code qui est la Logistique elle-même. M. Russell s’apprête-t-il à montrer que l’un au moins des deux raisonnements contradictoires a transgressé ce code ? Pas le moins du monde, il s’apprête à changer ces lois, et à en abroger un certain nombre. S’il réussit, j’en ferai honneur à l’intuition de M. Russell et non à la Logistique péanienne qu’il aura détruite.


== III. La liberté de la contradiction. ==

J’avais opposé dans l’article cité deux objections principales à la définition du nombre entier adoptée par les logisticiens. Que répond M. Couturat à la première de ces objections ?

Que signifie en mathématiques le mot exister ; il signifie, avais-je dit, être exempt de contradiction. C’est ce que M. Couturat conteste ; « L’existence logique, dit-il, est tout autre chose que l’absence de contradiction. Elle consiste dans le fait qu’une classe n’est pas vide ; dire : Il existe des a, c’est, par définition, affirmer que la classe a n’est pas nulle ». Et sans doute, affirmer que la classe a n’est pas nulle, c’est par définition, affirmer qu’il existe des a. Mais l’une des deux affirmations est aussi dénuée de sens que l’autre, si elles ne signifient pas toutes deux, ou bien qu’on peut voir ou toucher des a, ce qui est le sens que leur donnent les physiciens ou les naturalistes, ou bien qu’on peut concevoir un a sans être entraîné à des contradictions, ce qui est le sens que leur donnent les logiciens et les mathématiciens.

Pour M. Couturat ce n’est pas la non-contradiction qui prouve l’existence, c’est l’existence qui prouve la non-contradiction. Pour établir l’existence d’une classe, il faut donc établir, par un exemple, qu’il y a un individu appartenant à cette classe : « Mais, dira-t-on, comment démontre-t-on l’existence de cet individu ? Ne faut-il pas que cette existence soit établie, pour qu’on puisse en déduire l’existence de la classe dont il fait partie ? — Eh bien, non ; si paradoxale que paraisse cette assertion, on ne démontre jamais l’existence d’un individu. Les individus, par cela seul qu’ils sont des individus, sont toujours considérés comme existants. On n’a jamais à exprimer qu’un individu existe, absolument parlant, mais seulement qu’il existe dans une classe. » M. Couturat trouve sa propre assertion paradoxale, il ne sera certainement pas le seul. Elle doit, pourtant avoir un sens ; il veut dire sans doute que l’existence d’un individu, seul au monde, et dont on n’affirme rien, ne peut entraîner de contradiction ; tant qu’il sera tout seul, il est évident qu’il ne pourra gêner personne. Eh bien, soit, nous admettrons l’existence de l’individu, « absolument parlant » ; mais de celle-là nous n’avons que faire ; il vous restera à démontrer l’existence de l’individu « dans une classe » et pour cela il vous faudra toujours prouver que l’affirmation : tel individu appartient à telle classe, n’est contradictoire ni en elle-même, ni avec les autres postulats adoptés.

« C’est donc émettre une exigence arbitraire et abusive que de prétendre qu’une définition n’est valable que si l’on prouve d’abord qu’elle n’est pas contradictoire. » On ne saurait revendiquer en termes plus énergiques et plus fiers la liberté de la contradiction. « En tout cas, l'onus probandi incombe à ceux qui croient que ces principes sont contradictoires. » Des postulats sont présumés compatibles jusqu’à preuve du contraire, de même qu’un accusé est présumé innocent.

Inutile d’ajouter que je ne souscris pas à cette revendication. Mais, dites-vous, la démonstration que vous exigez de nous est impossible, et vous ne pouvez nous sommer de « prendre la lune avec les dents ». Pardon, cela est impossible pour vous, mais pas pour nous, qui admettons le principe d’induction comme un jugement synthétique a priori. Et cela serait nécessaire pour vous, comme pour nous.

Pour démontrer qu’un système de postulats n’implique pas contradiction, il faut appliquer le principe d’induction complète ; non seulement ce mode de raisonnement n’a rien de « bizarre », mais c’est le seul correct. Il n’est pas « invraisemblable » qu’on l’ait jamais employé ; et il n’est pas difficile d’en trouver des « exemples et des précédents ». J’en ai cité deux dans mon article et qui étaient empruntés à la brochure de M. Hilbert. Il n’est pas le seul à en avoir fait usage et ceux qui ne l’ont pas fait ont eu tort. Ce que j’ai reproché à M. Hilbert, ce n’est pas d’y avoir eu recours (un mathématicien de race comme lui ne pouvait pas ne pas voir qu’il fallait une démonstration et que celle-là était la seule possible), mais d’y avoir eu recours sans y reconnaître le raisonnement par récurrence.


IV. La seconde objection. modifier

J’avais signalé une seconde erreur des logisticiens dans l’article de M. Hilbert ; aujourd’hui M. Hilbert est excommunié et M. Couturat ne le regarde plus comme un logisticien ; il va donc me demander si j’ai trouvé la même faute chez les logisticiens orthodoxes. Non, je ne l’ai pas vue dans les pages que j’ai lues ; je ne sais si je la trouverais dans les 300 pages qu’ils ont écrites et que je n’ai pas envie de lire.

Seulement il faudra bien qu’ils la commettent le jour où ils voudront tirer de la science mathématique une application quelconque. Cette science n’a pas uniquement pour objet de contempler éternellement son propre nombril ; elle touche à la nature et un jour ou l’autre elle prendra contact avec elle ; ce jour-là, il faudra secouer les définitions purement verbales et ne plus se payer de mots.

Revenons à l’exemple de M. Hilbert ; il s’agit toujours du raisonnement par récurrence, et de la question de savoir si un système de postulats n’est pas contradictoire. M. Couturat me dira sans aucun doute qu’alors cela ne le touche pas, mais cela intéressera peut-être ceux qui ne revendiquent pas comme lui la liberté de la contradiction.

Nous voulons établir comme plus haut que nous ne rencontrerons pas de contradiction après un nombre quelconque de raisonnements, aussi grand que l’on veut, pourvu que ce nombre soit fini. Pour cela il faut appliquer le principe d’induction. Devons-nous entendre ici par nombre fini, tout nombre auquel par définition le principe d’induction s’applique ? Évidemment non, sans quoi nous serions conduits aux conséquences les plus étranges.

Pour que nous ayons le droit de poser un système de postulats, il faut que nous soyons assurés qu’ils ne sont pas contradictoires. C’est là une vérité qui est admise par la plupart des savants, j’aurais écrit par tous avant d’avoir lu le dernier article de M. Couturat. Mais que signifie-t-elle ? Veut-elle dire : il faut que nous soyons sûrs de ne pas rencontrer de contradiction après un nombre fini de propositions, le nombre fini étant par définition celui qui jouit de toutes les propriétés de nature récurrente, de telle façon que si une de ces propriétés faisait défaut, si par exemple nous tombions sur une contradiction, nous conviendrions de dire que le nombre en question n’est pas fini ?

En d’autres termes, voulons-nous dire : Il faut que nous soyons sûrs de ne pas rencontrer de contradiction à la condition de convenir de nous arrêter juste au moment où nous serions sur le point d’en rencontrer une ? Il suffit d’énoncer une pareille proposition pour la condamner.

Ainsi non seulement le raisonnement de M. Hilbert suppose le principe d’induction, mais il suppose que ce principe nous est donné, non comme une simple définition, mais comme un jugement synthétique a priori.

En résumé :

Une démonstration est nécessaire.

La seule démonstration possible est la démonstration par récurrence.

Elle n’est légitime que si on admet le principe d’induction, et si ou le regarde non comme une définition, mais comme un jugement synthétique.


V. Les antinomies cantoriennes. modifier

Je vais maintenant aborder l’examen de l’important mémoire de M. Russell. Ce mémoire a été écrit en vue de triompher des difficultés soulevées par ces antinomies cantoriennes auxquelles nous avons fait déjà de fréquentes allusions. Cantor avait cru pouvoir constituer une Science de l’Infini ; d’autres se sont avancés dans la voie qu’il avait ouverte, mais ils se sont bientôt heurtés à d’étranges contradictions. Ces antinomies sont déjà nombreuses, mais les plus célèbres sont :

1° L’antinomie Burali-Forti ;

2° L’antinomie Zermelo-König ;

3° L’antinomie Richard.

Cantor avait démontré que les nombres ordinaux (il s’agit des nombres ordinaux transfinis, notion nouvelle introduite par lui) peuvent être rangés en une série linéaire, c’est-à-dire que de deux nombres ordinaux inégaux, il y en a toujours un qui est plus petit que l’autre. Burali-Forti démontre le contraire ; et en effet, dit-il en substance, si on pouvait ranger tous les nombres ordinaux en une série linéaire, cette série définirait un nombre ordinal qui serait plus grand que tous les autres ; on pourrait ensuite y ajouter 1 et on obtiendrait encore un nombre ordinal qui serait encore plus grand, et cela est contradictoire.

Nous reviendrons plus loin sur l’antinomie Zermelo-König qui est d’une nature un peu différente ; voici ce que c’est que l’antinomie Richard. (Revue générale des Sciences, 30 juin 1905.) Considérons tous les nombres décimaux qu’on peut définir à l’aide d’un nombre fini de mots ; ces nombres décimaux forment un ensemble E, et il est aisé de voir que cet ensemble est dénombrable, c’est-à-dire qu’on peut numéroter les divers nombres décimaux de cet ensemble depuis 1 jusqu’à l’infini. Supposons le numérotage effectué, et définissons un nombre N de la façon suivante. Si la ne décimale du ne nombre de l’ensemble E est

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

la ne décimale de N sera

1, 2, 3, 4, 5, 6, 7, 8, 1, 1

Comme on le voit, N n’est pas égal au ne nombre de E et comme n est quelconque, N n’appartient pas à E et pourtant N devrait appartenir à cet ensemble puisque nous l’avons défini avec un nombre fini de mots.

Nous verrons plus loin que M. Richard a donné lui-même, avec beaucoup de sagacité, l’explication de son paradoxe et que son explication peut s’étendre, mutatis mutandis, aux autres paradoxes analogues.

Quel est le plus petit nombre entier que l’on ne peut pas définir par une phrase formée de moins de cent mots français ?

Ce nombre existe ; et en effet les nombres susceptibles d’être définis par une pareille phrase sont évidemment en nombre fini puisque les mots de la langue française ne sont pas en nombre infini. Donc, parmi eux, il y en aura un qui sera plus petit que tous les autres.

Et, d’autre part, ce nombre n’existe pas, car sa définition implique contradiction. Ce nombre en effet se trouve défini par la phrase en italiques qui est formée de moins de cent mots français ; et par définition ce nombre ne doit pas pouvoir être défini par une semblable phrase.


VI. Zigzag-theory et noclass-theory. modifier

Quelle est l’attitude de M. Russell en présence de ces contradictions ? Après avoir analysé celles dont nous venons de parler et en avoir cité d’autres encore, après leur avoir donné une forme qui fait penser à l’Epiménide, il n’hésite pas à conclure :

« A propositional function of one variable does not always determine a class. » Une « propositional function » ou « norm » peut être « non prédicative ». Et cela ne veut pas dire que ces propositions non prédicatives déterminent une classe vide, une classe nulle ; cela ne veut pas dire qu’il n’y a aucune valeur de x qui satisfasse à la définition et qui puisse être l’un des éléments de la classe. Les éléments existent, mais ils n’ont pas le droit de se syndiquer pour former une classe.

Mais cela n’est que le commencement et il faut savoir reconnaître si une définition est ou non prédicative ; pour résoudre ce problème, M. Russell hésite entre trois théories qu’il appelle

A. The zigzag theory ;

B. The theory of limitation of size ;

C. The no classes theory.

D’après la zigzag theory : « les définitions (fonctions propositionnelles) déterminent une classe quand elles sont très simple et ne cessent de le faire que quand elles sont compliquées et obscures ». Qui décidera maintenant si une définition peut être regardée comme suffisamment simple pour être acceptable ? A cette question pas de réponse, sinon l’aveu loyal d’une complète impuissance : « les règles qui permettraient de reconnaître si ces définitions sont prédicatives seraient extrêmement compliquées et ne peuvent se recommander par aucune raison plausible. C’est un défaut auquel on pourrait remédier par plus d’ingéniosité ou en se servant de distinctions non encore signalées. Mais jusqu’ici, en cherchant ces règles, je n’ai pu trouver d’autre principe directeur que l’absence de contradiction ».

Cette théorie reste donc bien obscure ; dans cette nuit, une seule lueur ; c’est le mot zigzag. Ce que M. Russell appelle la « zigzag-giness » c’est sans doute ce caractère particulier qui distingue l’argument d’Epiménide.

D’après la theory of limitation of size, une classe cesserait d’avoir droit à l’existence si elle était trop étendue. Peut-être pourrait-elle être infinie, mais il ne faudrait pas qu’elle le fût trop.

Mais nous retrouvons toujours la même difficulté ; à quel moment précis commencera-t-elle à l’être trop ? Bien entendu, cette difficulté n’est pas résolue et M. Russell passe à la troisième théorie.

Dans la no classes theory, il est interdit de prononcer le mot classe et on doit remplacer ce mot par des périphrases variées. Quel changement pour les logisticiens qui ne parlent que de classes et de classes de classes ! Il va falloir refaire toute la Logistique. Se figure-t-on quel sera l’aspect d’une page de Logistique quand on en aura supprimé toutes les propositions où il est question de classe ? Il n’y aura plus que quelques survivantes éparses au milieu d’une page blanche. Apparent rari nantes in gurgite vasto.

Quoi qu’il en soit, on voit quelles sont les hésitations de M. Russell, les modifications qu’il va faire subir aux principes fondamentaux qu’il a adoptés jusqu’ici. Il va falloir des critères pour décider si une définition est trop compliquée ou trop étendue, et ces critères ne pourront être justifiés que par un appel à l’intuition.

C’est vers la no classes theory que M. Russell incline finalement.

Quoi qu’il en soit, la Logistique est à refaire et on ne sait trop ce qu’on en pourra sauver. Inutile d’ajouter que le Cantorisme et la Logistique sont seuls en cause ; les vraies mathématiques, celles qui servent à quelque chose, pourront continuer à se développer d’après leurs principes propres sans se préoccuper des orages qui sévissent en dehors d’elles, et elles poursuivront pas à pas leurs conquêtes accoutumées qui sont définitives et qu’elles n’ont jamais à abandonner.


IX. La vraie solution. modifier

Quel choix devons-nous faire entre ces différentes théories ? Il me semble que la solution est contenue dans une lettre de M. Richard dont j’ai parlé plus haut et qu’on trouvera dans la Revue Générale des Sciences du 30 juin 1905. Après avoir exposé l’antinomie que nous avons appelée l’antinomie Richard, il en donne l’explication.

Reportons-nous à ce que nous avons dit de cette antinomie au § VII ; E est l’ensemble de tous les nombres que l’on peut définir par un nombre fini de mots, sans introduire la notion de l’ensemble E lui-même. Sans quoi la définition de E contiendrait un cercle vicieux ; on ne peut pas définir E par l’ensemble E lui-même.

Or nous avons défini N, avec un nombre fini de mots il est vrai, mais en nous appuyant sur la notion de l’ensemble E. Et voilà pourquoi N ne fait pas partie de E.

Dans l’exemple choisi par M. Richard, la conclusion se présente avec une entière évidence et l’évidence paraîtra encore plus grande quand on se reportera au texte même de sa lettre. Mais la même explication vaut pour les autres antinomies ainsi qu’il est aisé de le vérifier.

Ainsi les définitions qui doivent être regardées comme non prédicatives sont celles qui contiennent un cercle vicieux. Et les exemples qui précèdent montrent suffisamment ce que j’entends par là. Est-ce là ce que M. Russell appelle la « zigzagginess ? » Je pose la question sans la résoudre.


X. Les démonstrations du principe d’induction. modifier

Examinons les prétendues démonstrations du principe d’induction et en particulier celle de M. Russell et celle de Burali-Forti.

Et d’abord pour mieux faire comprendre la position de la question, profitons de quelques dénominations nouvelles heureusement introduites par M. Russell dans son récent mémoire.

Appelons classe récurrente toute classe de nombres qui contient zéro, et qui contient n+1 si elle contient n.

Appelons nombre inductif tout nombre qui fait partie de toutes les classes récurrentes.

Appelons nombre fini le nombre cardinal d’une classe qui n’est équivalente à aucune de ses parties.

Il faut entendre, d’après tout ce qui précède, par toutes les classes récurrentes, toutes celles dans la définition desquelles n’entre pas la notion de nombre inductif.

Sans cela on retombe dans le cercle vicieux qui a engendré les antinomies.

Or Whitehead n’a pas pris cette précaution.

Le raisonnement de Whitehead est donc vicieux ; c’est le même qui a conduit aux antinomies ; il était illégitime quand il donnait des résultats faux ; il reste illégitime quand il conduit par hasard à un résultat vrai.

Une définition qui contient un cercle vicieux ne définit rien. Il ne sert à rien de dire, nous sommes sûrs, quelque sens que nous donnions à notre définition, qu’il y a au moins zéro qui appartient à la classe des nombres inductifs ; il ne s’agit pas de savoir si cette classe est vide, mais si on peut rigoureusement la délimiter. Une classe « non prédicative » ce n’est pas une classe vide, c’est une classe dont la frontière est indécise.

Inutile d’ajouter que cette objection particulière laisse subsister les objections générales qui s’appliquent à toutes les démonstrations.


X. modifier

M. Burali-Forti a donné une autre démonstration dans son article Le Classi finite (Atti di Torino, t. XXXII). Mais il est obligé d’admettre deux postulats :

Le premier, c’est qu’il existe toujours au moins une classe infinie.

Le second s’énonce ainsi :

Le premier postulat n’est pas plus évident que le principe à démontrer ; le second non seulement n’est pas évident, mais il est faux ; comme l’a montré M. Whitehead, comme d’ailleurs le moindre taupin s’en serait aperçu du premier coup, si l’axiome avait été énoncé dans un langage intelligible, puisqu’il signifie : le nombre des combinaisons qu’on peut former avec plusieurs objets est plus petit que le nombre de ces objets.

XI. L’axiome de Zermelo. modifier

Dans sa démonstration célèbre, M. Zermelo s’appuie sur l’axiome suivant :

Dans un ensemble quelconque (ou même dans chacun des ensembles d’un ensemble d’ensembles) nous pouvons toujours choisir au hasard un élément (quand même cet ensemble d’ensembles comprendrait une infinité d’ensembles). On avait appliqué mille fois cet axiome sans l’énoncer, mais dès qu’il fut énoncé, il souleva des doutes. Quelques mathématiciens, comme M. Borel, le rejetèrent résolument ; d’autres l’admirent. Voyons ce qu’en pense M. Russell, d’après son dernier article.

Il ne se prononce pas, mais les considérations auxquelles il se livre sont très suggestives.

Et d’abord un exemple pittoresque ; supposons que nous ayons autant de paires de bottes que de nombres entiers, de telle façon que nous puissions numéroter les paires depuis 1 jusqu’à l’infini ; combien aurons-nous de bottes ? le nombre des bottes sera-t-il égal au nombre des paires. Oui, si dans chaque paire, la botte droite se distingue de la botte gauche ; il suffira de donner le numéro 2n-1 à la botte droite de la ne paire et le numéro 2n à la botte gauche de la ne paire. Non, si la botte droite est pareille à la botte gauche, parce qu’une pareille opération deviendra impossible. A moins que l’on n’admette l’axiome de Zermelo, parce qu’alors on pourra choisir au hasard dans chaque paire la botte que l’on regardera comme droite.


XII. Conclusions. modifier

Une démonstration vraiment fondée sur les principes de la Logique Analytique se composera d’une suite de propositions ; les unes, qui serviront de prémisses, seront des identités ou des définitions ; les autres se déduiront des premières de proche en proche ; mais bien que le lien entre chaque proposition et la suivante s’aperçoive immédiatement, on ne verra pas du premier coup comment on a pu passer de la première à la dernière, que l’on pourra être tenté de regarder comme une vérité nouvelle. Mais si l’on remplace successivement les diverses expressions qui y figurent par leur définition et si l’on poursuit cette opération aussi loin qu’on le peut, il ne restera plus à la fin que des identités, de sorte que tout se réduira à une immense tautologie. La Logique reste donc stérile, à moins d’être fécondée par l’intuition.

Voilà ce que j’ai écrit autrefois ; les logisticiens professent le contraire et croient l’avoir prouvé en démontrant effectivement des vérités nouvelles. Par quel mécanisme ?

Pourquoi, en appliquant à leurs raisonnements le procédé que je viens de décrire, c’est-à-dire en remplaçant les termes définis par leurs définitions, ne les voit-on pas se fondre en identités comme les raisonnements ordinaires ? C’est que ce procédé ne leur est pas applicable. Et pourquoi ? parce que leurs définitions sont non prédicatives et présentent cette sorte de cercle vicieux caché que j’ai signalé plus haut ; les définitions non prédicatives ne peuvent pas être substituées au terme défini. Dans ces conditions, la Logistique n’est plus stérile, elle engendre l’antinomie.

C’est la croyance à l’existence de l’infini actuel qui a donné naissance à ces définitions non prédicatives. Je m’explique : dans ces définitions figure le mot tous, ainsi qu’on le voit dans les exemples cités plus haut. Le mot tous a un sens bien net quand il s’agit d’un nombre fini d’objets ; pour qu’il en eût encore un, quand les objets sont en nombre infini, il faudrait qu’il y eût un infini actuel. Autrement tous ces objets ne pourront pas être conçus comme posés antérieurement à leur définition et alors si la définition d’une notion N dépend de tous les objets A, elle peut être entachée de cercle vicieux, si parmi les objets A il y en a qu’on ne peut définir sans faire intervenir la notion N elle-même.

Les règles de la logique formelle expriment simplement les propriétés de toutes les classifications possibles. Mais pour qu’elles soient applicables, il faut que ces classifications soient immuables et qu’on n’ait pas à les modifier dans le cours du raisonnement. Si l’on a à classer qu’un nombre fini d’objets, il est facile de conserver ses classifications ses classifications sans changement. Si les objets sont en nombre indéfini, c’est-à-dire si on est sans cesse exposé à voir surgir des objets nouveaux et imprévus, il peut arriver que l’apparition d’un objet nouveau oblige à modifier la classification, et c’est ainsi qu’on est exposé aux antinomies.

Il n’y a pas d’infini actuel ; les Cantoriens l’ont oublié, et ils sont tombés dans la contradiction. Il est vrai que le Cantorisme a rendu des services, mais c’était quand on l’appliquait à un vrai problème, dont les termes étaient nettement définis, et alors on pouvait marcher sans crainte.

Les logisticiens l’ont oublié comme les Cantoriens et ils ont rencontré les mêmes difficultés. Mais il s’agit de savoir s’ils se sont engagés dans cette voie par accident, ou si c’était pour eux une nécessité.

Pour moi, la question n’est pas douteuse ; la croyance à l’infini actuel est essentielle dans la logistique russelienne. C’est justement ce qui la distingue de la logistique hilbertienne. Hilbert se place au point de vue de l’extension, précisément afin d’éviter les antinomies cantoriennes ; Russell se place au point de vue de la compréhension. Par conséquent le genre est pour lui antérieur à l’espèce, et le summum genus est antérieur à tout. Cela n’aurait pas d’inconvénient si le summum genus était fini ; mais s’il est infini, il faut poser l’infini avant le fini, c’est-à-dire regarder l’infini comme actuel.

Et nous n’avons pas seulement des classes infinies ; quand nous passons du genre à l’espèce en restreignant le concept par des conditions nouvelles, ces conditions sont encore en nombre infini. Car elles expriment généralement que l’objet envisagé présente telle ou telle relation avec tous les objets d’une classe infinie.

Mais cela, c’est de l’histoire ancienne. M. Russell a aperçu le péril et il va aviser. Il va tout changer ; et qu’on s’entende bien : il ne s’apprête pas seulement à introduire de nouveaux principes qui permettront des opérations autrefois interdites ; il s’apprête à interdire des opérations qu’il jugeait autrefois légitimes. Il ne se contente pas d’adorer ce qu’il a brûlé ; il va brûler ce qu’il a adoré, ce qui est plus grave. Il n’ajoute pas une nouvelle aile au bâtiment, il en sape les fondations.

L’ancienne Logistique est morte, si bien que la zigzag-theory et la no classes theory se disputent déjà sa succession. Pour juger la nouvelle, nous attendrons qu’elle existe.