Page:Diderot - Encyclopedie 1ere edition tome 9.djvu/632

Le texte de cette page a été corrigé et est conforme au fac-similé.

le logarithme du nombre immédiatement au-dessus 9237, c’est-à-dire celui de 9238, lequel

est 3.9655780.
& j’en soustrairois celui de 9237, trouvé ci-dessus, sçavoir, 3.9655309.

& il resteroit 471.
cela posé, je ferois cette proportion : comme 10, différence de 92380 à 92370, est à la différence trouvée toute-à-l’heure, savoir 471, ainsi 5 qui me restoit dans le nombre proposé à droite, après en avoir retranché les quatre premieres figures à gauche, est à la différence logarithmique que je cherchois, laquelle seroit par conséquent 235 ; il n’y auroit donc plus qu’à ajouter ensemble le logarithme de 92370,
sçavoir, 4.9655309.
& la différence logarithmique trouvée, 235.

& il viendroit 4.9655544.
pour la valeur du logarithme cherché. La raison de cette opération est que les différences de trois nombres a, b, c, lorsque ces différences sont fort petites, sont entr’elles, à très-peu près, comme les différences de leurs logarithmes. Voyez Logarithmique.

Si le nombre proposé étoit une fraction ou un entier plus une fraction, il faudroit d’abord réduire le tout à une seule fraction, & chercher séparément le logarithme du numérateur & celui du dénominateur pour la méthode qu’on vient de donner, ensuite on retrancheroit les deux logarithmes l’un de l’autre, & on auroit le logarithme de la fraction proposée.

Soit proposé de plus de trouver le nombre correspondant à un logarithme plus grand qu’aucun de ceux qui sont dans les tables. Soustrayez d’abord du logarithme donné le logarithme de 10, ou celui de 100, ou celui de 1000, ou celui de 10000, le premier en un mot, de cette espece qui donnera un restant d’un nombre de caracteres, tels qu’il s’en trouve dans les tables. Trouvez le nombre correspondant à ce restant considéré lui-même comme logarithme, & multipliez ce nombre trouvé par 100, par 1000, ou par 10000, &c. le produit sera le nombre cherché.

Supposons par exemple, qu’on demande le nombre correspondant au logarithme 7.7589982, vous en ôterez le logarithme du nombre 10000, lequel est 4.0000000, & le restant sera 3.7589982, lequel correspond dans les tables au nombre 5741. Vous multiplierez donc ce dernier nombre par 1000, & le produit 57411100 sera le nombre cherché. Si on propose de trouver le nombre, ou pour parler plus proprement, la fraction correspondante à un logarithme négatif, il faudra ajoûter au logarithme donné, le dernier logarithme de la table ; c’est-à-dire, celui du nombre 10000, ou pour mieux dire, il faudra soustraire le premier pris positivement du second, & trouver le nombre correspondant au reste de la soustraction regardée comme logarithme. Vous ferez de ce nombre le numérateur d’une fraction, à laquelle vous donnerez 10000 pour dénominateur, & cette fraction sera le nombre cherché. Par exemple, supposons qu’on demande la fraction correspondante

au logarithme négatif, 0.3679767.
je le soustrais du logarithme de 10000, ou de 4.0000000.

& le restant est 3.6320233.

auquel correspond dans les tables le nombre 4285. la fraction cherchée sera donc . On appercevra la raison de cette regle, en observant que toutes fractions étant le quotient de son numérateur par son dénominateur, l’unité doit être à la fraction comme le dénominateur est au numérateur ; mais comme l’unité est à la fraction qui doit corres-

pondre au logarithme négatif donné, ainsi 10000 est au nombre correspondant au logarithme restant ; donc si l’on prend 10000 pour dénominateur, & le nombre correspondant pour numérateur, on aura la fraction requise.

Soit enfin proposé de trouver un quatrieme proportionnel à trois nombres donnés. Vous ajouterez le logarithme du second à celui du troisieme, & de la somme que cette addition vous aura fournie, vous ôterez le logarithme du premier, le restant sera le logarithme du quatrieme nombre cherché. Par exemple, soit donné les nombres 4, 68 & 3.

Le logarithme de 68 est 1.8325089.
Le logarithme de 3 est 0.4771213.
Je les ajoute, & je trouve pour somme
2.3096302.
Le logarithme de 4 est 0.6020600.

Je fais la soustraction, & il reste 1.7075702,
qui doit être le logarithme du nombre cherché ; & comme le nombre correspondant dans les tables est 51, j’en conclus que 51 est le nombre cherché lui-même.

Ce problème est du plus grand usage dans la Trigonométrie. Voyez Triangle & Trigonométrie.

Tous ces problèmes sur les logarithmes se déduisent évidemment de la théorie des logarithmes donnée ci-dessus, & ils peuvent se démontrer aussi par la théorie de la logarithmique qu’on trouvera à son article.

Nous terminerons celui-ci par une question qui a été fort agitée entre MM. Léibnitz & Bernoulli. Les logarithmes des quantités négatives sont-ils réels ou imaginaires ? M. Léibnitz tenoit pour le second, M. Bernoulli pour le premier. On peut voir les lettres qu’ils s’écrivoient à ce sujet ; elles sont imprimées dans le commercium epistolicum de ces deux grands hommes, publié en 1745 à Lausanne. J’eus autrefois (en 1747 & 1748) une controverse par lettres avec le célebre M. Euler sur le même sujet ; il soutenoit l’opinion de M. Léibnitz, & moi celle de M. Bernoulli. Cette controverse a occasioné un savant mémoire de M. Euler, imprimé dans le volume de l’académie de Berlin pour l’année 1709. Depuis ce tems, M. de Foncenex a traité la même matiere dans le premier volume des mémoires de l’académie de Turin, & se déclare pour le sentiment de M. Euler qu’il appuie de nouvelles preuves. J’ai composé sur ce sujet un écrit dans lequel je me déclare au contraire pour l’opinion de M. Bernoulli. Comme cet écrit aura probablement vu le jour avant la publication du présent article, je ne l’insererai point ici, & je me contenterai d’y renvoyer mes lecteurs, ainsi qu’aux écrits dont j’ai parlé ; ils y trouveront toutes les raisons qu’on peut apporter pour & contre les logarithmes imaginaires des quantités négatives. Je me bornerai à dire ici, 1°. Que si on prend entre deux nombres réels & positifs, par exemple 1 & 2, une moyenne proportionnelle, cette moyenne proportionnelle sera aussi-bien que , & qu’ainsi le logarithme de & celui de seront le même, savoir log. . 2°. Que si dans l’équation & le logarithmique (Voyez Logarithmique & Exponentiel) on fait , on aura , & qu’ainsi le logarithmique aura des ordonnées négatives & positives, en tel nombre qu’on voudra à l’infini ; d’où il s’ensuit que les logarithmes de ces ordonnées seront les mêmes, c’est-à-dire des quantités réelles. 3°. A ces raisons ajoutez celle qui se tire de la quadrature de l’hyperbole entre ses asymptotes, que M. Bernoulli a donnée le premier, & que j’ai fortifiée par de nouvelles preuves ; ajoutez enfin beaucoup d’autres raisons que l’on peut lire dans mon mémoire, ainsi que mes ré-