Science et méthode/Introduction
Je réunis ici diverses études qui se rapportent plus ou moins directement à des questions de méthodologie scientifique. La méthode scientifique consiste à observer et à expérimenter ; si le savant disposait d’un temps infini, il n’y aurait qu’à lui dire : « Regardez et regardez bien » ; mais, comme il n’a pas le temps de tout regarder et surtout de tout bien regarder, et qu’il vaut mieux ne pas regarder que de mal regarder, il est nécessaire qu’il fasse un choix. La première question est donc de savoir comment il doit faire ce choix. Cette question se pose au physicien comme à l’historien ; elle se pose également au mathématicien, et les principes qui doivent les guider les uns et les autres ne sont pas sans analogie. Le savant s’y conforme instinctivement, et on peut, en réfléchissant sur ces principes, présager ce que peut être l’avenir des mathématiques.
On s’en rendra mieux compte encore si l’on observe le savant à l’œuvre et tout d’abord il faut connaître le mécanisme psychologique de l’invention et, en particulier, celle de l’invention mathématique. L’observation des procédés de travail du mathématicien est particulièrement instructive pour le psychologue.
Dans toutes les sciences d’observation, il faut compter avec les erreurs dues aux imperfections de nos sens et de nos instruments. Heureusement, on peut admettre que, dans certaines conditions, ces erreurs se compensent en partie, de façon à disparaître dans les moyennes ; cette compensation est due au hasard. Mais qu’est-ce que le hasard ? Cette notion est difficile à justifier et même à définir ; et pourtant ce que je viens de dire, au sujet des erreurs d’observation, montre que le savant ne peut s’en passer. Il est donc nécessaire de donner une définition aussi précise que possible de cette notion si indispensable et si insaisissable.
Ce sont là des généralités qui s’appliquent en somme à toutes les sciences ; et par exemple le mécanisme de l’invention mathématique ne diffère pas sensiblement du mécanisme de l’invention en général. J’aborde ensuite des questions qui se rapportent plus particulièrement à certaines sciences spéciales et d’abord aux mathématiques pures. Je suis obligé, dans les chapitres qui leur sont consacrés, de traiter des sujets un peu plus abstraits. Je dois d’abord parler de la notion d’espace ; tout le monde sait que l’espace est relatif, ou plutôt tout le monde le dit, mais que de personnes pensent encore comme si elles le croyaient absolu ; il suffit cependant de réfléchir un peu pour apercevoir à quelles contradictions elles sont exposées.
Les questions d’enseignement ont leur importance, d’abord par elles-mêmes, ensuite parce que, réfléchir sur la meilleure manière de faire pénétrer les notions nouvelles dans les cerveaux vierges, c’est en même temps réfléchir sur la façon dont ces notions ont été acquises par nos ancêtres, et par conséquent sur leur véritable origine, c’est-à-dire au fond sur leur véritable nature. Pourquoi les enfants ne comprennent-ils rien le plus souvent aux définitions qui satisfont les savants ? Pourquoi faut-il leur en donner d’autres ? C’est la question que je me pose dans le chapitre suivant et dont la solution pourrait, je crois, suggérer d’utiles réflexions aux philosophes qui s’occupent de la logique des sciences.
D’autre part, bien des géomètres croient qu’on peut réduire les mathématiques aux règles de la logique formelle. Des efforts inouïs ont été tentés dans ce sens ; pour y parvenir, on n’a pas craint, par exemple, de renverser l’ordre historique de la genèse de nos conceptions et on a cherché à expliquer le fini par l’infini. Je crois être parvenu, pour tous ceux qui aborderont le problème sans parti pris, à montrer qu’il y a [là] une illusion décevante. J’espère que le lecteur comprendra l’importance de la question et me pardonnera l’aridité des pages que j’ai dû y consacrer.
Les derniers chapitres relatifs à la mécanique et à l’astronomie seront d’une lecture plus facile.
La mécanique semble sur le point de subir une révolution complète. Les notions qui paraissaient le mieux établies sont battues en brèche par de hardis novateurs. Certainement il serait prématuré de leur donner raison dès aujourd’hui, uniquement parce que ce sont des novateurs. Mais il y a intérêt à faire connaître leurs doctrines, et c’est ce que j’ai cherché à faire. J’ai suivi le plus possible l’ordre historique ; car les nouvelles idées sembleraient trop étonnantes si on ne voyait comment elles ont pu prendre naissance.
L’astronomie nous offre des spectacles grandioses et soulève de gigantesques problèmes. On ne peut songer à leur appliquer directement la méthode expérimentale ; nos laboratoires sont trop petits. Mais l’analogie avec les phénomènes que ces laboratoires nous permettent d’atteindre peut néanmoins guider l’astronome. La Voie Lactée, par exemple, est un ensemble de Soleils dont les mouvements semblent d’abord capricieux. Mais cet ensemble ne peut-il être comparé à celui des molécules d’un gaz dont la théorie cinétique des gaz nous a fait connaître les propriétés ? C’est ainsi que, par une voie détournée, la méthode du physicien peut venir en aide à l’astronome.
Enfin, j’ai voulu faire en quelques lignes l’histoire du développement de la géodésie française ; j’ai montré au prix de quels efforts persévérants, et souvent de quels dangers, les géodésiens nous ont procuré les quelques notions que nous possédons sur la figure de la Terre. Est-ce bien là une question de méthode ? Oui, sans doute, cette histoire nous enseigne en effet de quelles précautions il faut entourer une opération scientifique sérieuse et ce qu’il faut de temps et de peines pour conquérir une décimale nouvelle.