Page:Revue philosophique de la France et de l’étranger, tome I, 1876.djvu/480

Cette page n’a pas encore été corrigée


même temps énoncer la règle générale qui nous permet de conclure de la négation de B à la négation de A. La subalternation et la contraposition de l’universelle affirmative sont donc également des syllogismes, l’un de la première figure, l’autre de la seconde ; l’un dans lequel la conclusion est particulière, et n’a qu’une valeur de fait, l’autre dans lequel elle est universelle, et vaut à la fois en fait et en droit. Quant au principe sur lequel repose la contraposition, je ne sache pas qu’il ait eu jusqu’ici l’honneur de figurer au nombre des axiomes de la logique ; je n’hésite pas cependant à le mettre sur la même ligne que celui de la subalternation, et à le formuler en disant que, lorsqu’un attribut en suppose un autre comme sa condition, la négation de la condition entraîne celle du conditionné : sublata conditione, tollitur etiam conditionatum.

Mais tout ce que nous venons de dire de l’universelle affirmative doit pouvoir s’appliquer encore une fois à l’universelle négative : car dire que nul A n’est B, c’est dire que la notion A exclut la notion B, et que la première ne peut pas être réalisée dans le même sujet que la seconde ; c’est dire, en d’autres termes, que la présence de l’attribut A, dans quelque sujet que ce soit, suppose, comme une condition indispensable, l’absence de l’attribut B. Nous pouvons donc nier l’attribut A de tout sujet qui ne remplit pas cette condition, c’est-à-dire qui possède l’attribut B ; et si nous appelons provisoirement ce sujet « B » , nous raisonnerons ainsi, dans la seconde figure et en Cesare :

Nul A n’est B :

or tout B est B :

donc nul B n’est A.

Il semble que ce raisonnement devait s’appeler la contraposition de l’universelle négative : car il est exactement parallèle à celui que