Page:Revue de métaphysique et de morale - 13.djvu/828

Le texte de cette page a été corrigé et est conforme au fac-similé.
818
revue de métaphysique et de morale.

« Si une propriété est vraie du nombre , et si l’on établit qu’elle est vraie de pourvu qu’elle le soit de , elle sera vraie de tous les nombres entiers. » J’y voyais le raisonnement mathématique par excellence. Je ne voulais pas dire, comme on l’a cru, que tous les raisonnements mathématiques peuvent se réduire à une application de ce principe. En examinant ces raisonnements d’un peu près, on y verrait appliqués beaucoup d’autres principes analogues, présentant les mêmes caractères essentiels. Dans cette catégorie de principes, celui de l’induction complète est seulement le plus simple de tous et c’est pour cela que je l’ai choisi pour type.

IV
Définitions et Axiomes.

L’existence de pareils principes est une difficulté pour les logiciens intransigeants ; comment prétendent-ils s’en tirer ? Le principe d’induction complète, disent-ils, n’est pas un axiome proprement dit ou un jugement synthétique a priori ; c’est tout simplement la définition du nombre entier. C’est donc une simple convention. Pour discuter cette manière de voir, il nous faut examiner d’un peu près les relations entre les définitions et les axiomes.

Reportons-nous d’abord à un article de M. Couturat sur les définitions mathématiques, qui a paru dans l’Enseignement mathématique, revue publiée chez Gauthier-Villars et chez Georg à Genève. Nous y verrons une distinction entre la définition directe et la définition par postulats.

« La définition par postulats, dit M. Couturat, s’applique, non à une seule notion, mais à un système de notions ; elle consiste à énumérer les relations fondamentales qui les unissent et qui permettent de démontrer toutes leurs autres propriétés ; ces relations sont des postulats… »

Si l’on a défini préalablement toutes ces notions, sauf une, alors cette dernière sera par définition l’objet qui vérifie ces postulats.

Ainsi certains axiomes indémontrables des mathématiques ne seraient que des définitions déguisées. Ce point de vue est souvent légitime ; et je l’ai admis moi-même en ce qui concerne par exemple le postulalum d’Euclide.