Page:Poincaré - Sur la dynamique de l’électron.djvu/25

Cette page a été validée par deux contributeurs.



l’énergie électrique transversale ; par


l’énergie magnétique transversale. Il n’y a pas d’énergie magnétique longitudinale, puisque Désignons par les quantités correspondantes dans le système idéal. On trouve d’abord :

D’autre part, nous pouvons observer que le champ réel dépend seulement de et et écrire :


d’où

Dans l’hypothèse de Lorentz on a et inversement proportionnel au rayon de l’électron, est une constante indépendante de la vitesse de l’électron réel ; on trouve ainsi pour l’énergie totale :


et pour l’action (par unité de temps) :

Calculons maintenant la quantité de mouvement électromagnétique ; nous trouverons :

Mais on doit avoir certaines relations entre l’énergie l’action par unité de temps et la quantité de mouvement La première de ces relations est :


la seconde est


d’où :

(2)

La seconde des équations (2) est toujours satisfaite ; mais la première ne l’est que si


c’est-à-dire si le volume de l’électron idéal est égal à celui de l’électron réel, ou encore si le volume de l’électron est constant ; c’est l’hypothèse de Langevin.