Page:Poincaré - Science et méthode (Édition définitive).djvu/63

Cette page n’a pas encore été corrigée

faire dans les actes ordinaires de la vie, et qui sont incapables de suivre ou de répéter sans erreur les démonstrations des Mathématiques qui sont plus longues, mais qui ne sont, après tout, qu’une accumulation de petits raisonnements tout à fait analogues à ceux qu’ils font si facilement. Est-il nécessaire d’ajouter que les bons mathématiciens eux-mêmes ne sont pas infaillibles ?

La réponse me semble s’imposer. Imaginons une longue série de syllogismes, et que les conclusions des premiers servent de prémisses aux suivants ; nous serons capables de saisir chacun de ces syllogismes, et ce n’est pas dans le passage des prémisses à la conclusion que nous risquons de nous tromper. Mais, entre le moment où nous rencontrons pour la première fois une proposition, comme conclusion d’un syllogisme, et celui où nous la retrouvons comme prémisse d’un autre syllogisme, il se sera écoulé parfois beaucoup de temps, on aura déroulé de nombreux anneaux de la chaîne ; il peut donc arriver qu’on l’ait oubliée, ou, ce qui est plus grave, qu’on en ait oublié le sens. Il peut donc se faire qu’on la remplace par une proposition un peu différente, ou que, tout en conservant le même énoncé, on lui attribue un sens un peu différent, et c’est ainsi qu’on est exposé à l’erreur.

Souvent le mathématicien doit se servir d’une règle : naturellement il a commencé par démontrer cette règle ; au moment où cette démonstration