Page:Poincaré - Science et méthode (Édition définitive).djvu/226

Cette page n’a pas encore été corrigée

de savoir si un système de postulats n’est pas contradictoire. M. Couturat me dira sans aucun doute qu’alors cela ne le touche pas, mais cela intéressera peut-être ceux qui ne revendiquent pas comme lui la liberté de la contradiction.

Nous voulons établir comme plus haut que nous ne rencontrerons pas de contradiction après un nombre quelconque de raisonnements, aussi grand que l’on veut, pourvu que ce nombre soit fini. Pour cela il faut appliquer le principe d’induction. Devons-nous entendre ici par nombre fini, tout nombre auquel par définition le principe d’induction s’applique ? Évidemment non, sans quoi nous serions conduits aux conséquences les plus étranges.

Pour que nous ayons le droit de poser un système de postulats, il faut que nous soyons assurés qu’ils ne sont pas contradictoires. C’est là une vérité qui est admise par la plupart des savants, j’aurais écrit par tous avant d’avoir lu le dernier article de M. Couturat. Mais que signifie-t-elle ? Veut-elle dire : il faut que nous soyons sûrs de ne pas rencontrer de contradiction après un nombre fini de propositions, le nombre fini étant par définition celui qui jouit de toutes les propriétés de nature récurrente, de telle façon que si une de ces propriétés faisait défaut, si par exemple nous tombions sur une contradiction, nous conviendrions de dire que le nombre en question n’est pas fini ?

En d’autres termes, voulons-nous dire : Il faut que