ce qu’on appelle son accélération. Si cette locomotive démarre dans les mêmes conditions avec un train beaucoup plus long, on remarque que l’accélération est plus petite. De là provient la notion, introduite dans la science par Newton, de la masse des corps qui en mesure l’inertie.
Si, dans notre exemple, la locomotive produit la seconde fois une accélération deux fois plus petite, cela s’exprime en disant que la masse du deuxième train est double de celle du premier. Si on trouve que l’accélération produite par la locomotive est la même pour trois wagons chargés de blé et pour un seul wagon chargé de lingots, on dira que les deux trains ont la même masse totale.
En un mot, les masses des corps sont des données conventionnelles définies par ce fait qu’elles sont proportionnelles aux accélérations causées par une même force. Autrement dit, la masse d’un corps est le quotient de la force qui agit sur lui par l’accélération qu’il lui imprime. Poincaré disait pittoresquement : Les masses sont des coefficients qu’il est commode d’introduire dans les calculs.
S’il est une propriété des objets qui tombe sous le sens, sous les sens, dont chaque homme ait en quelque sorte l’instinct, l’intuition, c’est bien celle de la masse des corps. Eh bien ! une analyse un peu aiguë nous montre donc notre impuissance à définir cette chose autrement que par des conventions déguisées. La définition poincariste semble paradoxale dans son aveu