Là est la raison profonde pour laquelle l’« Intervalle » einsteinien des choses, quantité invariable, « Invariant », doit rester le même par rapport à tous les observateurs quelles que soient leurs vitesses, et en particulier pour les observateurs animés de vitesses équivalentes, en un lieu donné, aux effets de la gravitation.
Mais alors les déductions que nous avons tirées de l’expérience de Michelson, relativement à l’aspect des phénomènes pour des observateurs en translations uniformes différentes, ne suffisent plus à nous rendre compte de toute la réalité. Elles ont besoin d’être complétées de sorte que l’invariant universel, l’« Intervalle » des choses, reste tel pour un observateur en mouvement quelconque.
Si je traverse une rue à une vitesse inouïe, mais d’un mouvement uniforme, son aspect général, par suite de la contraction due à ma vitesse, pourra être pour moi un peu différent de ce qu’il m’apparaîtrait si j’étais immobile[1]. Les maisons par exemple me paraîtront plus étroites en proportion de leur hauteur. Cependant l’aspect et les proportions générales des objets, seront à peu près les mêmes dans les deux cas, et auront quelque chose de commun. C’est ainsi que les becs de gaz m’apparaîtront plus minces, mais ils seront toujours droits.
Il en sera tout autrement si l’observateur est animé
- ↑ Il va sans dire qu’on suppose ici l’observateur muni d’une rétine à impressions instantanées.