Page:Nordmann - Einstein et l’univers, 1921.djvu/154

Cette page a été validée par deux contributeurs.
148
EINSTEIN ET L’UNIVERS.

des visées de chacun des sommets aux deux autres. Il trouva que la somme des trois angles du triangle ne différait de 180 degrés que d’une quantité égale aux erreurs d’expérience.

Beaucoup de béotiens et quelques philosophes se moquèrent fort de ces expériences et de Gauss. Ils déclarèrent, avec le catégorisme apriorique qu’on rencontre parfois chez les uns et les autres, que les mesures même si elles avaient eu un autre résultat n’auraient rien prouvé contre les théorèmes d’Euclide, mais établi seulement que quelque cause perturbatrice incurvait les rayons lumineux entre les trois sommets du triangle. C’est exact, mais cela ne signifie rien.

Si Gauss avait trouvé que la somme des angles du triangle étudié dépassait deux droits, cela aurait prouvé que la géométrie réelle n’était pas celle d’Euclide. La question que s’était posée Gauss était pleine de profondeur et de sens. Les béotiens et quelques philosophes qui le conspuèrent eussent pu être mis au défi de définir les lignes droites réelles, les lignes droites naturelles autrement que par les trajets de la lumière.

Si Gauss n’a pas trouvé que la somme des angles fût différente de deux droits c’est parce que ses mesures étaient trop peu précises. Si elles avaient été beaucoup plus exactes, ou s’il avait pu opérer sur un triangle plus grand, dont les sommets eussent été la Terre, Jupiter en opposition et une autre planète, il eût trouvé une différence notable.

L’Univers réel n’est donc pas euclidien. Il n’est à