Par conséquent encore, l’« Intervalle » (à la fois dans le temps et dans l’espace) du rayon lumineux et de la balle est et reste zéro. Or cet « Intervalle » doit demeurer tel, quelle que soit la vitesse de l’observateur. Si donc l’obus de Jules Verne ne tombe plus mais est arrêté à la surface de la Lune, ses passagers continueront de voir le rayon lumineux coïncider en chacun de ses points, avec la trajectoire de la balle. Cette trajectoire (ils le remarquent maintenant) est incurvée par la pesanteur ; donc le rayon lumineux est pareillement incurvé par elle.
Ceci démontre que la lumière ne se propage pas en ligne droite mais tombe exactement comme tous les objets, sous l’influence de la gravitation.
Si on ne l’a jamais constaté naguère, si on a toujours cru que la lumière se propage en ligne droite, c’est que par suite de son énorme vitesse, sa trajectoire n’est que très peu courbée par la pesanteur.
Cela est compréhensible. À la surface de la Terre par exemple, la lumière doit tomber (comme tous les objets) avec une vitesse qui au bout d’une seconde est de 981 centimètres. Or, au bout d’une seconde, un rayon lumineux a déjà parcouru 300 000 kilomètres. Supposons (ce qui est bien exagéré) qu’on puisse observer près de la surface de la Terre un rayon lumineux horizontal de 300 kilomètres de long. Pendant le millième de seconde que ce rayon emploiera à aller d’un observateur à l’autre il tombera seulement d’une quantité égale à 5 millièmes de millimètre.
On conçoit qu’un rayon lumineux qui, sur une dis-