Accueil
Au hasard
Se connecter
Configuration
Faire un don
À propos de Wikisource
Avertissements
Rechercher
Page
:
Laplace - Œuvres complètes, Gauthier-Villars, 1878, tome 8.djvu/454
Langue
Suivre
Modifier
Le texte de cette page a été
corrigé
et est conforme au fac-similé.
+
2
i
2
(
i
2
−
1
)
(
1
+
i
2
)
2
{\displaystyle +{\frac {2i^{2}\left(i^{2}-1\right)}{\left(1+i^{2}\right)^{2}}}}
+
{
α
e
cos
(
n
t
+
θ
)
−
α
e
′
cos
(
n
′
t
+
θ
′
)
}
{
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
sin
(
n
′
t
−
n
t
+
B
)
+
1
2
[
(
d
b
1
d
q
)
−
(
d
b
3
d
q
)
]
sin
2
(
n
′
t
−
n
t
+
B
)
+
…
…
…
…
…
…
…
…
}
{\displaystyle +\left\{{\begin{aligned}&\alpha e\ \cos(nt+\theta )\\-&\alpha e'\cos(n't+\theta ')\end{aligned}}\right\}\left\{{\begin{aligned}&\left[\left({\frac {db}{dq}}\right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\right)\right]\sin(n't-nt+\mathrm {B} )\\+{\frac {1}{2}}&\left[({\frac {db_{1}}{dq}})-\ \ \left({\frac {db_{3}}{dq}}\right)\right]\sin 2(n't-nt+\mathrm {B} )\\+\ \ &\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \end{aligned}}\right\}}
+
15
i
3
4
(
1
+
i
2
)
2
α
2
e
e
′
[
(
b
)
−
1
2
(
b
2
)
]
sin
V
+
3
4
α
2
γ
γ
′
i
2
1
+
i
2
[
(
b
)
−
1
2
(
b
2
)
]
sin
U
{\displaystyle +{\frac {15i^{3}}{4\left(1+i^{2}\right)^{2}}}\alpha ^{2}ee'\left[(b)-{\frac {1}{2}}(b_{2})\right]\sin \mathrm {V} +{\frac {3}{4}}\alpha ^{2}\gamma \gamma '{\frac {i^{2}}{1+i^{2}}}\left[(b)-{\frac {1}{2}}(b_{2})\right]\sin \mathrm {U} }
−
2
α
2
e
e
′
i
2
(
1
−
3
i
2
+
i
4
)
(
1
+
i
2
)
3
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
sin
V
+
α
2
γ
γ
′
i
3
(
1
+
i
2
)
2
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
sin
U
−
2
α
2
e
e
′
i
3
(
1
−
i
2
)
2
(
1
+
i
2
)
4
[
(
d
2
b
d
q
2
)
−
1
2
(
d
2
b
2
d
q
2
)
]
sin
V
.
{\displaystyle {\begin{aligned}-2\alpha ^{2}ee'{\frac {i^{2}\left(1-3i^{2}+i^{4}\right)}{\left(1+i^{2}\right)^{3}}}&\left[\left({\frac {db}{dq}}\ \right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\ \ \right)\right]\sin \mathrm {V} \\+{\frac {\alpha ^{2}\gamma \gamma 'i^{3}}{\left(1+i^{2}\right)^{2}}}&\left[\left({\frac {db}{dq}}\ \right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\ \ \right)\right]\sin \mathrm {U} \\-{\frac {2\alpha ^{2}ee'i^{3}\left(1-i^{2}\right)^{2}}{\left(1+i^{2}\right)^{4}}}&\left[\left({\frac {d^{2}b}{dq^{2}}}\right)-{\frac {1}{2}}\left({\frac {d^{2}b_{2}}{dq^{2}}}\right)\right]\sin \mathrm {V} .\end{aligned}}}
Soit
15
i
3
4
(
1
+
i
2
)
2
[
(
b
)
−
1
2
(
b
2
)
]
−
2
i
2
(
1
−
3
i
2
+
i
4
)
(
1
+
i
2
)
3
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
−
i
3
(
1
−
i
2
)
2
(
1
+
i
2
)
4
[
(
d
2
b
d
q
2
)
−
1
2
(
d
2
b
2
d
q
2
)
]
=
K
,
3
i
2
4
(
1
+
i
2
)
[
(
b
)
−
1
2
(
b
2
)
]
+
i
3
(
1
+
i
2
)
2
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
=
L
;
{\displaystyle {\begin{aligned}{\frac {15i^{3}}{4\left(1+i^{2}\right)^{2}}}\left[(b)-{\frac {1}{2}}(b_{2})\right]-{\frac {2i^{2}\left(1-3i^{2}+i^{4}\right)}{\left(1+i^{2}\right)^{3}}}&\left[\left({\frac {db}{dq}}\ \ \right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\ \right)\right]\\-{\frac {i^{3}\left(1-i^{2}\right)^{2}}{\left(1+i^{2}\right)^{4}}}&\left[\left({\frac {d^{2}b}{dq^{2}}}\right)-{\frac {1}{2}}\left({\frac {d^{2}b_{2}}{dq^{2}}}\right)\right]=\mathrm {K} ,\\{\frac {3i^{2}}{4\left(1+i^{2}\right)}}\left[(b)-{\frac {1}{2}}(b_{2})\right]+{\frac {i^{3}}{\left(1+i^{2}\right)^{2}}}&\left[\left({\frac {db}{dq}}\ \ \right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\ \right)\right]=\mathrm {L} \,;\end{aligned}}}
C
=
i
[
(
b
)
−
1
2
(
b
2
)
]
,
C
1
C
=
2
i
[
1
2
(
b
1
)
−
1
2
(
b
3
)
]
,
C
2
C
=
3
i
[
1
2
(
b
2
)
−
1
2
(
b
4
)
]
,
…
…
…
…
…
;
{\displaystyle {\begin{aligned}\mathrm {C} =&\ \ i\left[\quad (b\ )-{\frac {1}{2}}(b_{2})\right],\\\sideset {^{1}}{}{\mathrm {C} }=&2i\left[{\frac {1}{2}}(b_{1})-{\frac {1}{2}}(b_{3})\right],\\\sideset {^{2}}{}{\mathrm {C} }=&3i\left[{\frac {1}{2}}(b_{2})-{\frac {1}{2}}(b_{4})\right],\\\ldots &\ldots \ldots \ldots \ldots \,;\end{aligned}}}
D
=
i
(
i
2
−
2
)
2
(
1
+
i
2
)
[
(
b
)
−
1
2
(
b
2
)
]
+
i
2
(
i
2
−
1
)
(
1
+
i
2
)
2
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
,
D
1
D
=
i
(
i
2
−
2
)
2
(
1
+
i
2
)
[
1
2
(
b
1
)
−
1
2
(
b
3
)
]
+
i
2
(
i
2
−
1
)
(
1
+
i
2
)
2
[
1
2
(
d
b
1
d
q
)
−
1
2
(
d
b
3
d
q
)
]
,
D
2
D
=
i
(
i
2
−
2
)
2
(
1
+
i
2
)
[
1
2
(
b
2
)
−
1
2
(
b
4
)
]
+
i
2
(
i
2
−
1
)
(
1
+
i
2
)
2
[
1
2
(
d
b
2
d
q
)
−
1
2
(
d
b
4
d
q
)
]
,
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
;
E
=
i
2
(
i
2
−
1
)
(
1
+
i
2
)
2
[
(
d
b
d
q
)
−
1
2
(
d
b
2
d
q
)
]
−
i
(
1
−
2
i
2
)
2
(
1
+
i
2
)
[
(
b
)
−
1
2
(
b
2
)
]
,
E
1
E
=
i
2
(
i
2
−
1
)
(
1
+
i
2
)
2
[
1
2
(
d
b
1
d
q
)
−
1
2
(
d
b
3
d
q
)
]
−
i
(
1
−
2
i
2
)
2
(
1
+
i
2
)
[
1
2
(
b
1
)
−
1
2
(
b
3
)
]
,
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
;
{\displaystyle {\begin{aligned}\mathrm {D} =&{\frac {i\left(i^{2}-2\right)}{2\left(1+i^{2}\right)}}\left[\quad (b\ )-{\frac {1}{2}}(b_{2})\right]+{\frac {i^{2}\left(i^{2}-1\right)}{\left(1+i^{2}\right)^{2}}}\left[\quad \left({\frac {db}{dq}}\ \ \right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\right)\right],\\\sideset {^{1}}{}{\mathrm {D} }=&{\frac {i\left(i^{2}-2\right)}{2\left(1+i^{2}\right)}}\left[{\frac {1}{2}}(b_{1})-{\frac {1}{2}}(b_{3})\right]+{\frac {i^{2}\left(i^{2}-1\right)}{\left(1+i^{2}\right)^{2}}}\left[{\frac {1}{2}}\left({\frac {db_{1}}{dq}}\right)-{\frac {1}{2}}\left({\frac {db_{3}}{dq}}\right)\right],\\\sideset {^{2}}{}{\mathrm {D} }=&{\frac {i\left(i^{2}-2\right)}{2\left(1+i^{2}\right)}}\left[{\frac {1}{2}}(b_{2})-{\frac {1}{2}}(b_{4})\right]+{\frac {i^{2}\left(i^{2}-1\right)}{\left(1+i^{2}\right)^{2}}}\left[{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\right)-{\frac {1}{2}}\left({\frac {db_{4}}{dq}}\right)\right],\\\ldots &\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \,;\\\mathrm {E} =&{\frac {i^{2}\left(i^{2}-1\right)}{\left(1+i^{2}\right)^{2}}}\left[\quad \left({\frac {db}{dq}}\ \,\right)-{\frac {1}{2}}\left({\frac {db_{2}}{dq}}\right)\right]-{\frac {i\left(1-2i^{2}\right)}{2\left(1+i^{2}\right)}}\left[\quad (b\ )-{\frac {1}{2}}(b_{2})\right],\\\sideset {^{1}}{}{\mathrm {E} }=&{\frac {i^{2}\left(i^{2}-1\right)}{\left(1+i^{2}\right)^{2}}}\left[{\frac {1}{2}}\left({\frac {db_{1}}{dq}}\right)-{\frac {1}{2}}\left({\frac {db_{3}}{dq}}\right)\right]-{\frac {i\left(1-2i^{2}\right)}{2\left(1+i^{2}\right)}}\left[{\frac {1}{2}}(b_{1})-{\frac {1}{2}}(b_{3})\right],\\\ldots &\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \,;\\\end{aligned}}}