Il arrive souvent aussi que la forme particulière des lois individuelles s’élimine, disparaît, quand on passe aux propriétés de l’ensemble dont certaines résultent uniquement du très grand nombre des éléments présents, ont le caractère de lois purement statistiques. Il semble bien, par exemple, que le principe de Carnot, la loi de destruction spontanée des substances radioactives, la loi d’action de masse et bien d’autres appartiennent à cette catégorie et soient uniquement des lois de grands nombres. Nul ne contestera que dans ce cas nous atteignons d’emblée l’explication complète de ces lois, la compréhension profonde de leur signification. Bien plus, nous prévoyons par là qu’elles doivent, comme toutes les lois de grands nombres, donner lieu à des écarts, à des fluctuations d’autant plus importantes qu’on les applique à des systèmes plus simples, comprenant un moindre nombre d’éléments. Vous savez tous que l’observation de ces écarts, dans des directions très variées, est venue apporter des arguments décisifs en faveur de l’existence des éléments discontinus, ainsi qu’une méthode générale et précise pour atteindre le nombre et la grandeur de ces éléments.
Pour constituer cette Physique du discontinu qui s’impose aujourd’hui, nous devons nécessairement faire usage de raisonnements statistiques, nous servir constamment du calcul des probabilités qui est le seul lien possible entre le monde des atomes et nous, entre les lois élémentaires et nos observations.