( 52 )
XXV.
Des formules de l’article précédent, qui se rapportent au triangle rectangle formé par des lignes de plus courte distance, passons à quelque chose de plus général. Soit sur la même ligne de plus courte distance , un autre point pour lequel ne change pas, et les lettres désignent pour le point les mêmes choses que pour le point On forme ainsi, entre les points un triangle dont nous désignons les angles par les côtés opposés par l’aire par nous exprimerons la mesure de la courbure aux points respectivement par Supposant donc (ce qui est permis) que les quantités sont positives, nous avons
Avant tout, exprimons l’aire en série. En changeant dans la série [7] chacune des quantités relatives à dans celles qui se rapportent à il vient cette série pour développée jusqu’aux quantités du sixième ordre,
Cette formule, à l’aide de la série [2], savoir,
se change dans la suivante :