Page:Gauss - Recherches générales sur les surfaces courbes, 1852.djvu/38

Le texte de cette page a été corrigé et est conforme au fac-similé.
( 36 )


XVIII.


Nous chercherons maintenant quelle est la condition pour que cette ligne soit la plus courte. Puisque la longueur de est exprimée par l’intégrale


la condition du minimum exige que la variation de cette intégrale, venant d’un changement infiniment petit dans la situation de cette ligne, devienne zéro. Le calcul, pour cette recherche, se fait plus commodément dans ce cas, si nous considérons comme fonction de Cela fait, si la variation est désignée par la caractéristique , nous avons

     


et l’on sait que l’expression sous le signe intégral doit s’évanouir indépendamment de On a ainsi


De là nous tirons, pour la ligue la plus courte, l’équa-