Page:Gauss - Recherches arithmétiques, traduction Poullet-Delisle, 1807.djvu/37

Cette page a été validée par deux contributeurs.
15
ARITHMÉTIQUES


ou , qui donne , d’où . Or en remontant à la valeur de , on trouve  ; donc .

31. De la même manière que la racine de l’équation , s’exprime par , nous désignerons par la racine d’une congruence , en y joignant le module pour la spécifier. Ainsi représente un nombre quelconque qui est , et qui, par analogie, peut s’exprimer par .

Il suit de là généralement que le symbole ne signifie rien de réel, ou si l’on aime mieux, est une expression imaginaire, si et ont un diviseur commun qui ne divise pas  ; mais, ce cas excepté, l’expression a toujours des valeurs réelles, et en a même une infinité : elles seront toutes congrues suivant , si est premier avec et suivant quand est le plus grand commun diviseur de et de .

Ces expressions se calculent presque de même que les fractions ordinaires, et voici quelques propriétés qui se déduisent facilement de ce qu’on a vu.

1o . Si , suivant le module , les expressions , sont équivalentes.

2o . et sont équivalentes.

3o . et , sont équivalentes quand est premier avec .

Nous pourrions rapporter plusieurs propositions semblables ; mais comme elles n’ont aucune difficulté, et qu’elles sont inutiles pour ce qui suivra, nous passerons à autre chose.

32. On peut facilement, au moyen de ce qui précède, trouver tous les nombres qui ont des résidus donnés, suivant des modules