( 74 )
4.
Les fonctions , en nombre infini, par lesquelles on peut remplacer , ne différeront les unes des autres, dans nos recherches, que par les valeurs qu’elles fourniront pour , , , etc. : nous devons donc, avant tout, chercher les relations qui existent entre les systèmes de valeurs que peuvent prendre ces coefficients. Désignons par
les valeurs que prennent les coefficients
si l’on y substitue pour , , , etc., leurs valeurs véritables. Il est clair que si l’on donne à , , , etc., des accroissements , , , etc., qui ne changent pas , , , etc., et leur laissent, par conséquent, la valeur zéro, ces accroissements, qui satisferont aux équations
ne changeront rien à la valeur de , et l’on aura, par conséquent,
On en conclut facilement que , , , etc., doivent avoir