Accueil
Au hasard
Se connecter
Configuration
Faire un don
À propos de Wikisource
Avertissements
Rechercher
Page
:
Gauss - Méthode des moindres carrés, trad. Bertrand, 1855.djvu/154
Langue
Suivre
Modifier
Cette page a été
validée
par deux contributeurs.
( 140 )
(
c
c
)
{\displaystyle (cc)}
=
{\displaystyle {}={}}
+
0,719
17
{\displaystyle {}+{}0{,}71917}
,
(
c
d
)
{\displaystyle (cd)}
=
{\displaystyle {}={}}
+
1,133
82
{\displaystyle {}+{}1{,}13382}
,
(
c
e
)
{\displaystyle (ce)}
=
{\displaystyle {}={}}
+
0,064
00
{\displaystyle {}+{}0{,}06400}
,
(
c
f
)
{\displaystyle (cf)}
=
{\displaystyle {}={}}
+
0,263
41
{\displaystyle {}+{}0{,}26341}
,
(
d
d
)
{\displaystyle (dd)}
=
{\displaystyle {}={}}
+
12,003
40
{\displaystyle {}+{}12{,}00340}
,
(
d
e
)
{\displaystyle (de)}
=
{\displaystyle {}={}}
−
0,371
37
{\displaystyle {}-{}0{,}37137}
,
(
d
f
)
{\displaystyle (df)}
=
{\displaystyle {}={}}
−
0,117
62
{\displaystyle {}-{}0{,}11762}
,
(
e
e
)
{\displaystyle (ee)}
=
{\displaystyle {}={}}
+
2,282
15
{\displaystyle {}+{}2{,}28215}
,
(
e
f
)
{\displaystyle (ef)}
=
{\displaystyle {}={}}
−
0,361
36
{\displaystyle {}-{}0{,}36136}
,
(
f
f
)
{\displaystyle (ff)}
=
{\displaystyle {}={}}
+
5,624
56
{\displaystyle {}+{}5{,}62456}
.
D’où l’on déduit :
(
n
n
,
1
)
{\displaystyle (nn,1)}
=
{\displaystyle {}={}}
+
125569
{\displaystyle {}+{}125569}
,
(
b
n
,
1
)
{\displaystyle (bn,1)}
=
{\displaystyle {}={}}
−
138534
{\displaystyle {}-{}138534}
,
(
c
n
,
1
)
{\displaystyle (cn,1)}
=
{\displaystyle {}={}}
−
119
,
31
{\displaystyle {}-{}119{,}31}
,
(
d
n
,
1
)
{\displaystyle (dn,1)}
=
{\displaystyle {}={}}
−
125
,
18
{\displaystyle {}-{}125{,}18}
,
(
e
n
,
1
)
{\displaystyle (en,1)}
=
{\displaystyle {}={}}
+
72
,
52
{\displaystyle {}+{}72{,}52}
,
(
f
n
,
1
)
{\displaystyle (fn,1)}
=
{\displaystyle {}={}}
−
43
,
22
{\displaystyle {}-{}43{,}22}
,
(
b
b
,
1
)
{\displaystyle (bb,1)}
=
{\displaystyle {}={}}
+
2458225
{\displaystyle {}+{}2458225}
,
(
b
c
,
1
)
{\displaystyle (bc,1)}
=
{\displaystyle {}={}}
+
62
,
13
{\displaystyle {}+{}62{,}13}
,
(
b
d
,
1
)
{\displaystyle (bd,1)}
=
{\displaystyle {}={}}
−
510
,
58
{\displaystyle {}-{}510{,}58}
,
(
b
e
,
1
)
{\displaystyle (be,1)}
=
{\displaystyle {}={}}
+
213
,
84
{\displaystyle {}+{}213{,}84}
,
(
b
f
,
1
)
{\displaystyle (bf,1)}
=
{\displaystyle {}={}}
+
73
,
45
{\displaystyle {}+{}73{,}45}
,
(
c
c
,
1
)
{\displaystyle (cc,1)}
=
{\displaystyle {}={}}
+
0,717
69
{\displaystyle {}+{}0{,}71769}
,
(
c
d
,
1
)
{\displaystyle (cd,1)}
=
{\displaystyle {}={}}
+
1,097
73
{\displaystyle {}+{}1{,}09773}
,
(
c
e
,
1
)
{\displaystyle (ce,1)}
=
{\displaystyle {}={}}
−
0,058
52
{\displaystyle {}-{}0{,}05852}
,
(
c
f
,
1
)
{\displaystyle (cf,1)}
=
{\displaystyle {}={}}
+
0,260
54
{\displaystyle {}+{}0{,}26054}
,
(
d
d
,
1
)
{\displaystyle (dd,1)}
=
{\displaystyle {}={}}
+
11,120
64
{\displaystyle {}+{}11{,}12064}
,
(
d
e
,
1
)
{\displaystyle (de,1)}
=
{\displaystyle {}={}}
−
0,505
28
{\displaystyle {}-{}0{,}50528}
,
(
d
f
,
1
)
{\displaystyle (df,1)}
=
{\displaystyle {}={}}
−
0,187
90
{\displaystyle {}-{}0{,}18790}
,
(
e
e
,
1
)
{\displaystyle (ee,1)}
=
{\displaystyle {}={}}
+
2,261
85
{\displaystyle {}+{}2{,}26185}
,
(
e
f
,
1
)
{\displaystyle (ef,1)}
=
{\displaystyle {}={}}
−
0,372
02
{\displaystyle {}-{}0{,}37202}
,
(
f
f
,
1
)
{\displaystyle (ff,1)}
=
{\displaystyle {}={}}
+
5,619
05
{\displaystyle {}+{}5{,}61905}
.
De la même manière :
(
n
n
,
2
)
{\displaystyle (nn,2)}
=
{\displaystyle {}={}}
+
117763
{\displaystyle {}+{}117763}
,
(
c
n
,
2
)
{\displaystyle (cn,2)}
=
{\displaystyle {}={}}
−
115
,
81
{\displaystyle {}-{}115{,}81}
,
(
d
n
,
2
)
{\displaystyle (dn,2)}
=
{\displaystyle {}={}}
−
153
,
95
{\displaystyle {}-{}153{,}95}
,
(
e
n
,
2
)
{\displaystyle (en,2)}
=
{\displaystyle {}={}}
+
84
,
57
{\displaystyle {}+{}84{,}57}
,
(
f
n
,
2
)
{\displaystyle (fn,2)}
=
{\displaystyle {}={}}
−
39
,
03
{\displaystyle {}-{}39{,}03}
,
(
c
c
,
2
)
{\displaystyle (cc,2)}
=
{\displaystyle {}={}}
+
0,716
12
{\displaystyle {}+{}0{,}71612}
,
(
c
d
,
2
)
{\displaystyle (cd,2)}
=
{\displaystyle {}={}}
+
1,110
63
{\displaystyle {}+{}1{,}11063}
,
(
c
e
,
2
)
{\displaystyle (ce,2)}
=
{\displaystyle {}={}}
−
0,063
92
{\displaystyle {}-{}0{,}06392}
,
(
c
f
,
2
)
{\displaystyle (cf,2)}
=
{\displaystyle {}={}}
+
0,258
68
{\displaystyle {}+{}0{,}25868}
,
(
d
d
,
2
)
{\displaystyle (dd,2)}
=
{\displaystyle {}={}}
+
11,014
66
{\displaystyle {}+{}11{,}01466}
,
(
d
e
,
2
)
{\displaystyle (de,2)}
=
{\displaystyle {}={}}
−
0,460
88
{\displaystyle {}-{}0{,}46088}
,
(
d
f
,
2
)
{\displaystyle (df,2)}
=
{\displaystyle {}={}}
−
0,172
65
{\displaystyle {}-{}0{,}17265}
,
(
e
e
,
2
)
{\displaystyle (ee,2)}
=
{\displaystyle {}={}}
+
2,243
25
{\displaystyle {}+{}2{,}24325}
,
(
e
f
,
2
)
{\displaystyle (ef,2)}
=
{\displaystyle {}={}}
−
0,378
41
{\displaystyle {}-{}0{,}37841}
,
(
f
f
,
2
)
{\displaystyle (ff,2)}
=
{\displaystyle {}={}}
+
5,616
86
{\displaystyle {}+{}5{,}61686}
.
D’où :
(
n
n
,
3
)
{\displaystyle (nn,3)}
=
{\displaystyle {}={}}
+
99034
{\displaystyle {}+{}99034}
,
(
d
n
,
3
)
{\displaystyle (dn,3)}
=
{\displaystyle {}={}}
+
25
,
66
{\displaystyle {}+{}25{,}66}
,
(
e
n
,
3
)
{\displaystyle (en,3)}
=
{\displaystyle {}={}}
+
74
,
23
{\displaystyle {}+{}74{,}23}
,
(
f
n
,
3
)
{\displaystyle (fn,3)}
=
{\displaystyle {}={}}
+
2
,
75
{\displaystyle {}+{}2{,}75}
,
(
d
d
,
3
)
{\displaystyle (dd,3)}
=
{\displaystyle {}={}}
+
9,292
13
{\displaystyle {}+{}9{,}29213}
,
(
d
e
,
3
)
{\displaystyle (de,3)}
=
{\displaystyle {}={}}
−
0,361
75
{\displaystyle {}-{}0{,}36175}
,
(
d
f
,
3
)
{\displaystyle (df,3)}
=
{\displaystyle {}={}}
−
0,573
84
{\displaystyle {}-{}0{,}57384}
,
(
e
e
,
3
)
{\displaystyle (ee,3)}
=
{\displaystyle {}={}}
+
2,237
54
{\displaystyle {}+{}2{,}23754}
,
(
e
f
,
3
)
{\displaystyle (ef,3)}
=
{\displaystyle {}={}}
−
0,355
32
{\displaystyle {}-{}0{,}35532}
,
(
f
f
,
3
)
{\displaystyle (ff,3)}
=
{\displaystyle {}={}}
+
5,523
42
{\displaystyle {}+{}5{,}52342}
.
De même :
(
n
n
,
4
)
{\displaystyle (nn,4)}
=
{\displaystyle {}={}}
+
98963
{\displaystyle {}+{}98963}
,
(
e
n
,
4
)
{\displaystyle (en,4)}
=
{\displaystyle {}={}}
+
75
,
23
{\displaystyle {}+{}75{,}23}
,
(
f
n
,
4
)
{\displaystyle (fn,4)}
=
{\displaystyle {}={}}
+
4
,
33
{\displaystyle {}+{}4{,}33}
,
(
e
e
,
4
)
{\displaystyle (ee,4)}
=
{\displaystyle {}={}}
+
2,223
46
{\displaystyle {}+{}2{,}22346}
,
(
e
f
,
4
)
{\displaystyle (ef,4)}
=
{\displaystyle {}={}}
−
0,377
66
{\displaystyle {}-{}0{,}37766}
,
(
f
f
,
4
)
{\displaystyle (ff,4)}
=
{\displaystyle {}={}}
+
5,487
98
{\displaystyle {}+{}5{,}48798}
.
D’où :
(
n
n
,
5
)
{\displaystyle (nn,5)}
=
{\displaystyle {}={}}
+
96418
{\displaystyle {}+{}96418}
,
(
f
n
,
5
)
{\displaystyle (fn,5)}
=
{\displaystyle {}={}}
+
17
,
11
{\displaystyle {}+{}17{,}11}
,
(
f
f
,
5
)
{\displaystyle (ff,5)}
=
{\displaystyle {}={}}
+
5,423
83
{\displaystyle {}+{}5{,}42383}
.
D’où enfin :
(
n
n
,
6
)
{\displaystyle (nn,6)}
=
{\displaystyle {}={}}
+
96364
{\displaystyle {}+{}96364}
.