Page:Diderot - Encyclopedie 1ere edition tome 6.djvu/766

Le texte de cette page a été corrigé et est conforme au fac-similé.

du pendule. Il est à remarquer que dans la table précédente, on a augmenté de de ligne les longueurs du pendule observées à Paris & à Pello (ce que je n’avois pas fait dans l’endroit cité de mes Recherches sur le système du monde) ; parce que les longueurs observées 440, 57, & 441, 17, sont celles du pendule dans l’air, & que les longueurs 440, 67, 441, 27, sont celles du même pendule dans un milieu non résistant, ainsi que les trois autres qui les précedent.

Mais si d’un côté la loi de l’accourcissement du pendule est assez conforme à l’hypothese elliptique, de l’autre la quantité de l’accourcissement sous l’équateur ne se trouve pas telle qu’elle devroit être, si l’applatissement de la Terre étoit  ; elle est plus grande que cette fraction. Ainsi les expériences du pendule semblent aussi donner quelque échec à la théorie Newtonienne de la figure de la Terre, dans laquelle on regarde cette planete comme fluide & homogene. Ceci nous conduit naturellement à parler de tout ce qui a été fait jusqu’à nos jours, pour étendre & perfectionner cette théorie.

M. Huyghens avoit déterminé la figure de la Terre dans l’hypothese, que la pesanteur primitive fût dirigée au centre, & que la pesanteur altérée par la force centrifuge fût perpendiculaire à la surface. M. Newton avoit supposé que la pesanteur primitive résultât de l’attraction de toutes les parties de la Terre, & que les colonnes centrales fussent en équilibre, sans égard à la perpendicularité à la surface. MM. Bouguer & de Maupertuis ont fait voir de plus dans les mémoires de l’académie des Sciences de 1734, que la Terre étant supposée fluide avec MM. Huyghens & Newton, il étoit nécessaire, pour qu’il y eût équilibre entre les parties, dans une hypothèse quelconque de pesanteur vers un ou plusieurs centres, que les deux principes hydrostatiques de M. Huyghens & de M. Newton s’accordassent entr’eux, c’est-à-dire que la direction de la pesanteur fût perpendiculaire à la surface, & que de plus les colonnes centrales fussent en équilibre. Ils ont démontré l’un & l’autre qu’il y a une infinité de cas où les colonnes centrales peuvent être en équilibre, sans que la pesanteur soit perpendiculaire à la surface, & réciproquement ; & qu’il n’y a point d’équilibre, à moins que l’observation de ces deux principes ne s’accorde à donner la même figure. Du reste ces deux habiles géometres ont principalement envisagé la question de la figure de la Terre, dans la supposition que la pesanteur primitive ait des directions données vers un ou plusieurs centres : l’hypothèse newtonienne de l’attraction des parties rendoit le problème beaucoup plus difficile.

Il l’étoit d’autant plus que la maniere dont il avoit été résolu par M. Newton pouvoit être regardée non seulement comme indirecte, mais encore comme insuffisante & imparfaite à certains égards : dans cette solution, M Newton supposoit d’abord que la Terre fût elliptique, & il déterminoit d’après cette hypothèse l’applatissement qu’elle devoit avoir : or quoique cette supposition de la Terre elliptique fût légitime dans l’hypothèse de la Terre homogene, cependant elle avoit besoin d’être démontrée ; sans cela c’étoit proprement supposer ce qui étoit en question. M. Stirling démontra le premier rigoureusement dans les Transactions philosoph. que la supposition de M. Newton étoit en effet légitime, en regardant la Terre comme un fluide homogene, & comme très-peu applatie. Bien-tôt après M. Clairaut, dans les mêmes Transactions, n°. 449. étendit cette théorie beaucoup plus loin. Il prouva que la Terre devoit être un sphéroïde elliptique, en supposant non-seulement qu’elle fût homogene, mais qu’elle fût composée de couches concentriques, dont chacune en particulier différât par sa densité des autres couches ; il est vrai qu’il regardoit alors les couches comme

semblables ; or la similitude des couches, ainsi que nous le verrons plus bas, & que M. Clairaut s’en est assûré ensuite, ne peut subsister dans l’hypothese que ces couches soient fluides.

En 1740, M. Maclaurin, dans son excellente piece sur le flux & reflux de la mer, qui partagea le prix de l’académie des Sciences, démontra le premier cette belle proposition, que si la Terre est supposée un fluide homogene, dont les parties s’attirent, & soient attirées outre cela par le Soleil ou par la Lune, suivant les lois ordinaires de la gravitation, ce fluide tournant autour de son axe avec une vitesse quelconque, prendra nécessairement la forme d’un sphéroïde elliptique, quel que soit son applatissement, c’est-à-dire très-petit ou non. De plus M. Maclaurin faisoit voir que dans ce sphéroïde, non-seulement la pesanteur étoit perpendiculaire à la surface, & les colonnes centrales en équilibre, mais encore qu’un point quelconque pris à volonté au-dedans du sphéroïde, étoit également pressé en tout sens. Cette derniere condition n’étoit pas moins nécessaire que les deux autres, pour qu’il y eût équilibre ; cependant aucun de ceux qui jusqu’alors avoient traité de la figure de la Terre, n’y avoient pensé ; on se bornoit à la perpendicularité de la pesanteur à la surface, & à l’équilibre des colonnes centrales, & on ne songeoit pas que selon les lois de l’Hydrostatique (voyez Fluide & Hydrostatique), il faut qu’un point quelconque du fluide soit également pressé en tout sens, c’est-à-dire que les colonnes du fluide, dirigées à un point quelconque, & non pas seulement au centre, soient en équilibre entr’elles.

M. Clairaut ayant médité sur cette derniere condition, en a déduit des conséquences profondes & curieuses, qu’il a exposées en 1742 dans son traité intitulé, Théorie de la figure de la Terre, tirée des principes de l’Hydrostatique. Selon M. Clairaut, il faut pour qu’un fluide soit en équilibre, que les efforts de toutes les parties comprises dans un canal de figure quelconque qu’on imagine traverser la masse entiere, se détruisent mutuellement. Ce principe est en apparence plus général que celui de M. Maclaurin ; mais j’ai fait voir dans mon essai sur la résistance des fluides, 1752. art. 18. que l’équilibre des canaux curvilignes n’est qu’un corollaire du principe plus simple de l’équilibre des canaux rectilignes de M. Maclaurin ; ce qui, au reste, ne diminue rien du mérite de M. Clairaut, puisqu’il a déduit de ce principe un grand nombre de vérités importantes que M. Maclaurin n’en avoit pas tirées, & qu’il avoit même assez peu connues pour tomber dans quelques erreurs ; par exemple, dans celles de supposer semblables entr’elles les couches d’un sphéroïde fluide, comme on le peut voir dans son traité des fluxions, art. 670. & suiv.

M. Clairaut, dans l’ouvrage que nous venons de citer, prouve (ce que M. Maclaurin n’avoit pas fait directement) qu’il y a une infinité d’hypothéses, où le fluide ne seroit pas en équilibre, quoique les colonnes centrales se contre-balançassent, & que la pesanteur fût perpendiculaire à la surface. Il donne une méthode pour reconnoître les hypothèses de pesanteur, dans lesquelles une masse fluide peut être en équilibre, & pour en déterminer la figure ; il démontre de plus, que dans le système de l’attraction des parties, pourvû que la pesanteur soit perpendiculaire à la surface, tous les points du sphéroïde seront également pressés en tout sens, & qu’ainsi l’équilibre du sphéroïde dans l’hypothèse de l’attraction, se réduit à la simple loi de la perpendicularité à la surface. D’après ce principe, il cherche les lois de la figure de la Terre dans l’hypothèse que les parties s’attirent, & qu’elle soit composée de couches hétérogenes, soit solides, soit fluides ; il trouve que la Terre doit avoir dans tous ces cas une figure elliptique plus ou moins