Page:Diderot - Encyclopedie 1ere edition tome 15.djvu/455

Le texte de cette page a été corrigé et est conforme au fac-similé.

C = c, & AC = ac, alors B = b, AB = ab, & bc = BC. Enfin si dans deux triangles sphériques AB = ab, AC = ac, & BC = bc ; donc A sera égal = a, B = b & C = c : les démonstrations de ces propriétés sont les mêmes que celles des propriétés semblables qui se rencontrent dans les triangles plans ; car les propositions sur l’égalité des triangles rectilignes s’étendent à tous les autres, &c. pourvu que leurs côtés soient semblables. Voyez Triangle sphérique isocele.

2o. Dans un triangle ABC, fig. 11. les angles à la base B & C sont égaux ; & si dans un triangle spherique les angles B & C à la base BC sont égaux, le triangle est isoscele.

3o. Dans tout triangle sphérique chaque côté est moindre qu’un demi-cercle ; deux côtés quelconques pris ensemble sont plus grands que le troisieme ; tous les trois côtés pris ensemble sont moindres que la circonférence d’un grand cercle, le plus grand côté est toujours opposé au plus grand angle, & le moindre côté au moindre angle.

4o. Si dans un triangle sphérique B A C, fig. 13. deux côtés AB & BC pris ensemble sont égaux à un demi-cercle, la base AC étant continuée en D, l’angle externe BCD sera égal à l’angle interne opposé BAC.

Si deux côtés pris ensemble sont moindres ou plus grands qu’un demi-cercle, l’angle externe BCD sera moindre ou plus grand que l’angle interne opposé A, & la converse de toutes ces propositions est vraie ; savoir, si l’angle BCD est égal ou plus grand, ou moindre que A, les côtés AB & BC sont égaux, ou plus grands, ou moindres qu’un demi-cercle.

5o. Si dans un triangle sphérique A B C, fig. 12. deux côtés AB & BC sont égaux à un demi-cercle, les angles à la base A & C sont égaux à deux angles droits ; si les côtés sont plus grands qu’un demi-cercle, les angles sont plus grands que deux droits ; & si les côtés sont moindres, les angles sont moindres, & réciproquement.

6o. Dans tout triangle sphérique chaque angle est moindre que deux droits ; & les trois ensemble sont moindres que six angles droits, & plus grands que deux.

7o. Si dans un triangle sphérique B A C, les côtés AB & BC sont des quarts de cercle, les angles à la base B & C seront des angles droits ; si l’angle A compris entre les côtés AB & AC est un angle droit, BC sera un quart de cercle ; si A est un angle obtus, BC sera plus grand qu’un quart de cercle ; & s’il est aigu, BC sera moindre, & réciproquement.

8o. Si dans un triangle sphérique rectangle, le côté B C, fig 14. adjacent à l’angle droit B, est un quart de cercle, l’angle A sera un angle droit ; si BE est plus grand qu’un quart de cercle, l’angle A sera obtus ; & si BD est moindre qu’un quart de cercle, l’angle A sera aigu, & réciproquement.

9o. Si dans un triangle spherique rectangle chaque côté est plus grand ou plus petit qu’un quart de cercle, l’hypothénuse sera moindre qu’un quart de cercle, & réciproquement.

10o. Si dans un triangle sphérique ABC, fig. 15. rectangle seulement en B, un côté CB est plus grand qu’un quart de cercle, & l’autre côté AB moindre, l’hypothénuse AB sera plus grande qu’un quart de cercle, & réciproquement.

11o. Si dans un triangle sphérique obliquangle A B C, fig. 16. les deux angles à la base A & B, sont obtus ou aigus, la perpendiculaire CD qu’on laissera tomber du troisieme angle C sur le côté opposé AB, tombera dans le triangle ; si l’un d’eux A est obtus, & l’autre B aigu, la perpendiculaire tombera hors du triangle.

12o. Si dans un triangle sphérique ABC tous les angles A, B, & C sont aigus, les côtés sont chacun

moindres qu’un quart de cercle. Ainsi, si dans un triangle sphérique obliquangle un côté est plus grand qu’un quart de cercle, il y a un angle obtus, savoir celui qui est opposé à ce côté.

13o. Si dans un triangle sphérique ACB, deux angles A & B sont obtus, & le troisieme C aigu, les côtés AC & CB opposés aux côtés obtus sont plus grands qu’un quart de cercle ; ainsi si les deux côtés sont moindres qu’un quart de cercle, les deux angles sont aigus.

14o. Si dans un triangle sphérique tous les côtés sont plus grands qu’un quart de cercle, ou-bien s’il y en a deux plus grands, & un qui soit égal à un quart de cercle, tous les angles sont obtus.

15o. Si dans un triangle sphérique obliquangle deux côtés sont moindres qu’un quart de cercle, & le troisieme plus grand, l’angle opposé au plus grand sera obtus & les autres aigus. Wolf & Chambers.

Sur la résolution des triangles sphériques, voyez Triangle.

Les propriétés des triangles sphériques sont démontrées avec beaucoup d’élégance & de simplicité dans un petit traité qui est imprimé à la fin de l’introductio ad veram Astronomiam, de M. Keill. M. Deparcieux, de l’académie royale des Sciences de Paris & de celle de Berlin, a donné au public en 1741, un traité de Trigonométrie sphérique, in-4°. imprimé à Paris chez Guérin ; l’auteur démontre dans cet ouvrage les propriétés des triangles sphériques, en regardant leurs angles comme les angles formés par les plans qui se coupent au centre de la sphere, & les côtés des triangles sphériques comme les angles que forment entr’elles les lignes tirées du centre de la sphere aux extrémités du triangle ; c’est-à-dire qu’il substitue aux triangles sphériques des pyramides qui ont leur sommet au centre de la sphere. L’académie royale des Sciences ayant fait examiner cet ouvrage par des commissaires qu’elle nomma à cet effet, a jugé que quoique l’idée de M. Déparcieux ne soit pas absolument nouvelle, & qu’elle l’ait obligé de charger quelques-unes de ses démonstrations d’un assez grand détail, elle lui avoit donné moyen d’en éclaircir & d’en simplifier un plus grand nombre d’autres, & que cet ouvrage ne pouvoit manquer d’être fort utile. (O)

L’astronomie sphérique est la partie de l’Astronomie qui considere l’univers dans l’état où l’œil l’apperçoit. Voyez Astronomie.

L’astronomie sphérique comprend tous les phénomenes & les apparences des cieux & des corps célestes, telles que nous les appercevons, sans en chercher les raisons & la théorie. En quoi elle est distinguée d’avec l’astronomie théorique, qui considere la structure réelle de l’univers, & les causes de ses phénomenes.

Dans l’astronomie sphérique on conçoit le monde comme une surface sphérique concave, au centre de laquelle est la terre, autour de laquelle le monde visible tourne avec les étoiles & les planetes, qui sont regardées comme attachées à sa circonférence ; & c’est sur cette supposition qu’on détermine tous les autres phénomenes.

L’astronomie théorique nous apprend par les lois de l’optique, &c. à corriger ces apparences, & à réduire le tout à un système plus exact.

Compas sphérique, voyez Compas.

Géométrie sphérique est la doctrine de la sphere & particulierement des cercles qui sont décrits sur sa surface, avec la méthode de les tracer sur un plan, & d’en mesurer les arcs & les angles quand on les a tracés.

La Trigonométrie sphérique est l’art de résoudre les triangles sphériques, c’est-à-dire, trois choses étant données dans un triangle sphérique, trouver tout le reste : par exemple, deux côtés & un angle étant