Ouvrir le menu principal

Page:Coubertin - L’Éducation des adolescents au XXe siècle, Volume II.djvu/113

Cette page a été validée par deux contributeurs.
103
commentaire et critique

cette expression générale) sans être mis en état de le prouver et de l’appliquer ? Voilà toute la question. Or le professeur qui, en histoire par exemple, tient constamment pour acquises des opinions plus ou moins discutables, lorsqu’il s’agit de faits mathématiques dont le caractère est indiscutable, a coutume d’arrêter son cours là où cesse pour l’élève la mise en pratique possible. Énoncer un théorème sans le démontrer lui semble un blasphème. Pourquoi ? La routine le veut ainsi. Ne se met-on pas en peine de prouver à l’enfant que les angles droits sont égaux et que deux lignes parallèles ne se rencontrent pas ? Ce sont là pourtant de ces vérités dont la mention suffirait. Or tout du long des mathématiques se tiennent des vérités similaires, plus ou moins complexes à énoncer, dont l’énoncé en tous cas représente pour l’esprit une acquisition précise et avantageuse. On peut dresser ainsi pour l’enseignement secondaire une sorte de panorama lointain mais clair de ce monde mathématique qui reste, comme l’électricité ou le magnétisme, mystérieux dans son principe mais domine et féconde tout le progrès scientifique. Nous croyons que ce panorama est à sa place là où nous l’avons mis, entre ciel et terre.