Accueil
Au hasard
Se connecter
Configuration
Faire un don
À propos de Wikisource
Avertissements
Rechercher
Page
:
Annales de mathématiques pures et appliquées, 1830-1831, Tome 21.djvu/279
Langue
Suivre
Modifier
Le texte de cette page a été
corrigé
et est conforme au fac-similé.
1
x
x
1
−
x
2
2
+
x
3
3
−
x
4
4
+
x
5
5
−
x
6
6
+
…
2
1
x
2
−
x
2
2
+
x
3
4
−
x
4
5
+
x
5
6
−
x
6
7
+
…
3
x
x
2
6
−
x
3
7
+
3
x
4
20
−
2
x
5
15
+
5
x
6
42
−
…
2
2
x
2
6
−
x
3
5
+
x
4
5
−
4
x
5
21
+
5
x
6
28
−
…
5
x
+
x
3
30
−
x
4
20
+
2
x
5
35
−
5
x
6
84
+
…
2
3
+
x
3
20
−
3
x
4
35
+
9
x
5
84
−
…
7
x
+
x
4
140
−
x
5
70
+
…
…
+
x
4
70
−
…
{\displaystyle {\begin{array}{r|l}{\frac {1}{x}}&{\frac {x}{1}}-{\frac {x^{2}}{2}}\ \ +{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}\ +{\frac {x^{5}}{5}}-{\frac {x^{6}}{6}}+\ldots \\\\{\frac {2}{1}}&{\frac {x}{2}}-{\frac {x^{2}}{2}}\ \ +{\frac {x^{3}}{4}}-{\frac {x^{4}}{5}}\ +{\frac {x^{5}}{6}}-{\frac {x^{6}}{7}}+\ldots \\\\{\frac {3}{x}}&\qquad {\frac {x^{2}}{6}}\ \ -{\frac {x^{3}}{7}}+{\frac {3x^{4}}{20}}-{\frac {2x^{5}}{15}}+{\frac {5x^{6}}{42}}-\ldots \\\\{\frac {2}{2}}&\qquad {\frac {x^{2}}{6}}\ \ -{\frac {x^{3}}{5}}+{\frac {x^{4}}{5}}\ -{\frac {4x^{5}}{21}}+{\frac {5x^{6}}{28}}-\ldots \\\\{\frac {5}{x}}&\qquad \qquad +{\frac {x^{3}}{30}}-{\frac {x^{4}}{20}}\ +{\frac {2x^{5}}{35}}-{\frac {5x^{6}}{84}}+\ldots \\\\{\frac {2}{3}}&\qquad \qquad +{\frac {x^{3}}{20}}-{\frac {3x^{4}}{35}}+{\frac {9x^{5}}{84}}-\ldots \\\\{\frac {7}{x}}&\qquad \qquad \qquad +{\frac {x^{4}}{140}}\ -{\frac {x^{5}}{70}}+\ldots \\\\\ldots &\qquad \qquad \qquad +{\frac {x^{4}}{70}}-\ldots \end{array}}}
ce qui donnera
Log
.
(
1
+
x
)
=
1
1
x
+
1
2
1
+
1
3
x
+
1
2
2
+
1
5
x
+
1
2
3
+
1
7
x
+
1
2
4
+
…
;
{\displaystyle \operatorname {Log} .(1+x)={\cfrac {1}{{\cfrac {1}{x}}+{\cfrac {1}{{\cfrac {2}{1}}+{\cfrac {1}{{\cfrac {3}{x}}+{\cfrac {1}{{\cfrac {2}{2}}+{\cfrac {1}{{\cfrac {5}{x}}+{\cfrac {1}{{\cfrac {2}{3}}+{\cfrac {1}{{\cfrac {7}{x}}+{\cfrac {1}{{\cfrac {2}{4}}+\ldots }}}}}}}}}}}}}}}}\,;}
ou bien encore