Accueil
Au hasard
Se connecter
Configuration
Faire un don
À propos de Wikisource
Avertissements
Rechercher
Page
:
Annales de mathématiques pures et appliquées, 1826-1827, Tome 17.djvu/122
Langue
Suivre
Modifier
Le texte de cette page a été
corrigé
et est conforme au fac-similé.
=
2
a
ϖ
{
φ
(
0
)
+
H
+
K
−
1
h
+
k
−
1
(
1
+
h
+
k
−
1
)
−
a
+
…
}
.
{\displaystyle =2^{a}\varpi \left\{\varphi (0)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\left(1+h+k{\sqrt {-1}}\right)^{-a}+\ldots \right\}.}
(146)
∫
0
ϖ
φ
(
e
p
−
1
)
+
φ
(
e
−
p
−
1
)
2
.
Cos
.
a
2
(
ϖ
−
p
)
(
Sin
.
p
2
)
a
d
p
{\displaystyle \int _{0}^{\varpi }{\frac {\varphi \left(e^{p{\sqrt {-1}}}\right)+\varphi \left(e^{-p{\sqrt {-1}}}\right)}{2}}.{\frac {\operatorname {Cos} .{\frac {a}{2}}(\varpi -p)}{\left(\operatorname {Sin} .{\frac {p}{2}}\right)^{a}}}\operatorname {d} p}
=
2
a
ϖ
{
φ
(
0
)
+
H
+
K
−
1
h
+
k
−
1
(
1
−
h
−
k
−
1
)
−
a
+
…
}
.
{\displaystyle =2^{a}\varpi \left\{\varphi (0)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\left(1-h-k{\sqrt {-1}}\right)^{-a}+\ldots \right\}.}
(147)
∫
0
ϖ
φ
(
e
p
−
1
)
+
φ
(
e
−
p
−
1
)
2
l
.
Tang
.
(
p
2
)
d
p
{\displaystyle \int _{0}^{\varpi }{\frac {\varphi \left(e^{p{\sqrt {-1}}}\right)+\varphi \left(e^{-p{\sqrt {-1}}}\right)}{2}}\operatorname {l} .\operatorname {Tang} .\left({\frac {p}{2}}\right)\operatorname {d} p}
=
ϖ
{
H
+
K
−
1
h
+
k
−
1
l
(
1
−
h
−
k
−
1
1
+
h
+
k
−
1
)
+
…
}
.
{\displaystyle =\varpi \left\{{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\operatorname {l} \left({\frac {1-h-k{\sqrt {-1}}}{1+h+k{\sqrt {-1}}}}\right)+\ldots \right\}.}
(148)
∫
0
ϖ
φ
(
e
p
−
1
)
+
φ
(
e
−
p
−
1
)
2
l
.
Cos
.
(
p
2
)
d
p
{\displaystyle \int _{0}^{\varpi }{\frac {\varphi \left(e^{p{\sqrt {-1}}}\right)+\varphi \left(e^{-p{\sqrt {-1}}}\right)}{2}}\operatorname {l} .\operatorname {Cos} .\left({\frac {p}{2}}\right)\operatorname {d} p}
=
ϖ
{
φ
(
0
)
.
l
(
1
2
)
+
H
+
K
−
1
h
+
k
−
1
l
(
1
+
h
+
k
−
1
2
)
+
…
}
.
{\displaystyle =\varpi \left\{\varphi (0).\operatorname {l} \left({\frac {1}{2}}\right)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\operatorname {l} \left({\frac {1+h+k{\sqrt {-1}}}{2}}\right)+\ldots \right\}.}
(149)
∫
0
ϖ
φ
(
e
p
−
1
)
+
φ
(
e
−
p
−
1
)
2
l
.
Sin
.
(
p
2
)
d
p
{\displaystyle \int _{0}^{\varpi }{\frac {\varphi \left(e^{p{\sqrt {-1}}}\right)+\varphi \left(e^{-p{\sqrt {-1}}}\right)}{2}}\operatorname {l} .\operatorname {Sin} .\left({\frac {p}{2}}\right)\operatorname {d} p}
=
ϖ
{
φ
(
0
)
.
l
(
1
2
)
+
H
+
K
−
1
h
+
k
−
1
l
(
1
−
h
−
k
−
1
2
)
+
…
}
.
{\displaystyle =\varpi \left\{\varphi (0).\operatorname {l} \left({\frac {1}{2}}\right)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\operatorname {l} \left({\frac {1-h-k{\sqrt {-1}}}{2}}\right)+\ldots \right\}.}
(150)
∫
0
ϖ
φ
(
e
p
−
1
)
+
φ
(
e
−
p
−
1
)
2
.
l
.
Cos
.
p
2
(
p
2
)
2
+
(
l
Cos
.
p
2
)
2
d
p
{\displaystyle \int _{0}^{\varpi }{\frac {\varphi \left(e^{p{\sqrt {-1}}}\right)+\varphi \left(e^{-p{\sqrt {-1}}}\right)}{2}}.{\frac {\operatorname {l} .\operatorname {Cos} .{\frac {p}{2}}}{\left({\frac {p}{2}}\right)^{2}+\left(\operatorname {l} \operatorname {Cos} .{\frac {p}{2}}\right)^{2}}}\operatorname {d} p}