Accueil
Au hasard
Se connecter
Configuration
Faire un don
À propos de Wikisource
Avertissements
Rechercher
Page
:
Annales de mathématiques pures et appliquées, 1826-1827, Tome 17.djvu/120
Langue
Suivre
Modifier
Le texte de cette page a été
corrigé
et est conforme au fac-similé.
=
2
ϖ
{
φ
(
0
)
+
H
+
K
−
1
h
+
k
−
1
(
1
−
h
−
k
−
1
1
+
h
+
k
−
1
)
a
+
…
}
.
{\displaystyle =2\varpi \left\{\varphi (0)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\left({\frac {1-h-k{\sqrt {-1}}}{1+h+k{\sqrt {-1}}}}\right)^{a}+\ldots \right\}.}
(136)
∫
−
ϖ
+
ϖ
Cos
.
a
p
2
−
−
1
Sin
.
a
p
2
(
Cos
.
p
2
)
a
φ
(
e
p
−
1
)
d
p
{\displaystyle \int _{-\varpi }^{+\varpi }{\frac {\operatorname {Cos} .{\frac {ap}{2}}-{\sqrt {-1}}\operatorname {Sin} .{\frac {ap}{2}}}{\left(\operatorname {Cos} .{\frac {p}{2}}\right)^{a}}}\varphi \left(e^{p{\sqrt {-1}}}\right)\operatorname {d} p}
=
2
a
+
1
.
ϖ
{
φ
(
0
)
+
H
+
K
−
1
h
+
k
−
1
(
1
+
h
+
k
−
1
)
−
a
+
…
}
.
{\displaystyle =2^{a+1}.\varpi \left\{\varphi (0)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\left(1+h+k{\sqrt {-1}}\right)^{-a}+\ldots \right\}.}
(137)
∫
−
ϖ
+
ϖ
(
1
−
−
1
Cot
.
p
2
)
a
φ
(
e
p
−
1
)
d
p
{\displaystyle \int _{-\varpi }^{+\varpi }\left(1-{\sqrt {-1}}\operatorname {Cot} .{\frac {p}{2}}\right)^{a}\varphi \left(e^{p{\sqrt {-1}}}\right)\operatorname {d} p}
=
2
a
+
1
.
ϖ
{
φ
(
0
)
+
H
+
K
−
1
h
+
k
−
1
(
1
−
h
−
k
−
1
)
−
a
+
…
}
;
{\displaystyle =2^{a+1}.\varpi \left\{\varphi (0)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}\left(1-h-k{\sqrt {-1}}\right)^{-a}+\ldots \right\}\,;}
(138)
∫
−
ϖ
+
ϖ
l
(
−
−
1
.
Tang
.
p
2
)
φ
(
e
p
−
1
)
d
p
{\displaystyle \int _{-\varpi }^{+\varpi }\operatorname {l} \left(-{\sqrt {-1}}.\operatorname {Tang} .{\frac {p}{2}}\right)\varphi \left(e^{p{\sqrt {-1}}}\right)\operatorname {d} p}
=
2
ϖ
{
H
+
K
−
1
h
+
k
−
1
.
(
1
−
h
−
k
−
1
1
+
h
+
k
−
1
)
+
…
}
.
{\displaystyle =2\varpi \left\{{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}.\left({\frac {1-h-k{\sqrt {-1}}}{1+h+k{\sqrt {-1}}}}\right)+\ldots \right\}.}
(139)
∫
−
ϖ
+
ϖ
[
l
Cos
.
p
2
+
1
2
p
−
1
]
φ
(
e
p
−
1
)
d
p
{\displaystyle \int _{-\varpi }^{+\varpi }\left[\operatorname {l} \operatorname {Cos} .{\frac {p}{2}}+{\frac {1}{2}}p{\sqrt {-1}}\right]\varphi \left(e^{p{\sqrt {-1}}}\right)\operatorname {d} p}
=
2
ϖ
{
φ
(
0
)
.
l
(
1
2
)
+
H
+
K
−
1
h
+
k
−
1
.
l
(
1
+
h
+
k
−
1
2
)
+
…
}
.
{\displaystyle =2\varpi \left\{\varphi (0).\operatorname {l} \left({\frac {1}{2}}\right)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}.\operatorname {l} \left({\frac {1+h+k{\sqrt {-1}}}{2}}\right)+\ldots \right\}.}
(140)
∫
−
ϖ
+
ϖ
l
(
1
+
−
1
.
Cot
.
p
2
)
.
φ
(
e
p
−
1
)
d
p
{\displaystyle \int _{-\varpi }^{+\varpi }\operatorname {l} \left(1+{\sqrt {-1}}.\operatorname {Cot} .{\frac {p}{2}}\right).\varphi \left(e^{p{\sqrt {-1}}}\right)\operatorname {d} p}
=
−
2
ϖ
{
φ
(
0
)
.
l
(
1
2
)
+
H
+
K
−
1
h
+
k
−
1
.
l
(
1
−
h
−
k
−
1
2
)
+
…
}
.
{\displaystyle =-2\varpi \left\{\varphi (0).\operatorname {l} \left({\frac {1}{2}}\right)+{\frac {H+K{\sqrt {-1}}}{h+k{\sqrt {-1}}}}.\operatorname {l} \left({\frac {1-h-k{\sqrt {-1}}}{2}}\right)+\ldots \right\}.}