drato EA bis), et quadrato EO his (id est quadrato IE his), una cum rectangulo OEZ bis. Auferatur utrimque OEZ bis; supererit verum quod asserebamus, et constat propositum in primo casu.
Sint data tria puncta B, D, E (fig. 35) in recta linea, et sit recta BD recta DE major; differentiæ inter BD et DE sit tertia pars CD. Centro C, intervallo quocumque, ut CA, describatur semicirculus AMF Aio quodcumque punctum in ipsius circumferentia sumpseris, ut M, eamdem semper fore summam trium quadratorum MB, MD, ME.
Nam jungantur MB, MIC, MD, ME; ipsi vero CD fiat equalis EN, et jungatur MN. Quum BD superet DE tripla CD sive tripla EN, ergo DN, una cumr dupla CD, equabitur BD; et CN, una cum CD, equabiturBD. Auferatur utrimque CD; ergo CN æquabitur BC. Quum CD sit sequalis EN, per secundam hujus Libelli propositionem[1], idem erit semper excessus quadratorum CM, MN super duo quadrata DM, ME. Sed CM quadratum est semper idem: ergo duo quadrata DM, ME semper vel quadrato MN æqualia erunt vel in idem excedent vel in idem deficient. Addatur utrimque quadratum MB: ergo tria quadrata MB, MD, ME duobus quadratis BM, MN vel semper wqualia erunt vel in idem excedent vel in idem deficient. Sed BM, MN quadrata idem semper conflant spatium, ex superiori propositione, propter æqualitatem rectarum BC, CN: ergo quadrata BM, DM, EM idem semper spatium conficiunt. Quod erat demonstrandum.
- ↑ Fermat désigne ainsi sa proposition (p. 30, fig. 25), comme s'il avait fait un numérotage en dehors de celui des propositions de Pappus.