Page:Œuvres de Fermat, Tannery, tome 1, 1891.djvu/262

Le texte de cette page a été corrigé et est conforme au fac-similé.

Quum enim, ex hypothesi, tangens KI occurrat basi AF extra curvam, ergo angulus CHI, qui fit ab intersectione perpendicularis in basim HC et tangentis HI, erit minor recto, ideoque a puncto H demissa perpendicularis in rectam BI cadet in punctum V supra puncta B, R, I. Patet itaque rectam HV minorem esse recta HI; item rectam HI minorem esse recta que puncta H et R conjungit: ergo, a fortiori, recta HI minor erit portione curvet HR, quam recta ab H ad R ducta subtendit. Quod primo loco fuit demonstrandum.

Aio jam portionem KH portione curvse HM esse majorem.

A puncto K ducatur ad eamdem curvam tangens KN, et demittatur perpendicularis NE. Ex prxedemonstratis, probatum est rectam KN esse minorem portione curvæ NM; sed, ex Archimede[1], summa tangentium HK, KN est major tota portione curvæ HN: ergo portio tangentis HK portione curvœ HM major erit. Quod secundo loco fuit ostendendum.

Nec moveat tangentem a puncto K ultra punctum G aliquando occurrere curvæ: hoc enim casu aliud punctuin inter K et M sumi poterit, et omnia ad prtecedentem demonstrationem aptari.

Inde sequitur, si a punctis K et I ducantur perpendiculares ad axem, curvam in punctis 0 et P secantes, hoc casu tangentem HI curva HO esse majorem, tangenter vero HK curva HP esse minorem.

Si enim imaginemur inverti figuram ita ut axis in locum baseos, basis in locum axis transferatur, non solum similis in hoc casu, sed eadem omnino erit demonstratio.

Patet autem, ex ipsa constructione, si rectæ BC et CD sint œquales, portiones tangentis HI et HK esse item inter se æquales, quod tanmen summopere notandum.

Propositio II.

Ad dimensionem linearum curvarum non utimur inscriptis et cir-


  1. Archimède, De sphaera et cylindro 1, λαμβανόμενον 2 : édition Heiberg, volume I, pages 8-10.