Ouvrir le menu principal

Page:Œuvres complètes de Blaise Pascal Hachette 1871, vol3.djvu/187

Cette page n’a pas encore été corrigée


de fois qu’on voudra, est si éloigné de pouvoir sur passer une étendue, qu’il ne peut jamais former qu’un seul et unique indivisible ; ce qui est naturel et nécessaire, comme il est déjà montré. Et comme cette dernière preuve est fondée sur la définition de ces deux choses, indivisible et étendue, on va achever et consommer la démonstration.

Un indivisible est ce qui n’a aucune partie, et l’étendue est ce qui a diverses parties séparées.

Sur ces définitions, je dis que deux indivisibles étant unis ne font par une étendue. Car, quand ils sont unis, ils se touchent chacun en une partie ; et ainsi les parties par où ils se touchent ne sont pas séparées, puisque autrement elles ne se toucheraient pas. Or, par leur définition, ils n’ont point d’autres parties : donc ils n’ont pas de parties séparées ; donc ils ne sont pas une étendue, par la définition qui porte la séparation des parties. On montrera la même chose de tous les autres indivisibles qu’on y joindra, par la même raison. Et partant un indivisible, multiplié autant qu’on voudra, ne fera jamais une étendue. Donc il n’est pas de même genre que l’étendue, par la définition des choses du même genre.

Voilà comment on démontre que les indivisibles ne sont pas de même genre que les nombres. De là vient que deux unités peuvent bien faire un nombre, parce qu’elles sont de même genre et que deux indivisibles ne font pas une étendue, parce qu’ils ne sont pas du même genre. D’où l’on voit combien il y a peu de raison de comparer le rapport qui est entre l’unité et les nombres à celui qui est entre les indivisibles et l’étendue.

Mais si l’on veut prendre dans les nombres une comparaison qui représente avec justesse ce que nous considérons dans l’étendue, il faut que ce soit le rapport du zéro aux nombres ; car le zéro n’est pas du même genre que les nombres, parce qu’étant multiplié, il ne peut les surpasser : de sorte que c’est un véritable indivisible de nombre, comme l’indivisible est un véritable zéro d’étendue. Et on en trouvera un pareil entre le repos et le mouvement, et entre un instant et le temps ; car toutes ces choses sont hétérogènes à leurs grandeurs, parce qu’étant infiniment multipliées, elles ne peuvent jamais faire que des indivisibles d’étendue, et par la même raison. Et alors on trouvera une correspondance parfaite entre ces choses ; car toutes ces grandeurs sont divisibles à l’infini, sans tomber dans leurs indivisibles, de sorte qu’elles tiennent toutes le milieu entre l’infini et le néant.

Voilà l’admirable rapport que la nature a mis entre ces choses, et les deux merveilleuses infinités qu’elle a proposées aux hommes, non pas à concevoir, mais à admirer ; et pour en finir la considération par une dernière remarque, j’ajouterai que ces deux infinis, quoique infiniment différents, sont néanmoins relatifs l’un à l’autre, de telle sorte que la connaissance de l’un mène nécessairement à la connaissance de l’autre.

Car dans les nombres, de ce qu’ils peuvent toujours être augmentés, il s’ensuit absolument qu’ils peuvent toujours être diminués, et cela clairement : car si l’on peut multiplier un nombre jusqu’à 100 000, par exemple, on