Ouvrir le menu principal

Page:Œuvres complètes de Blaise Pascal Hachette 1871, vol3.djvu/179

Cette page a été validée par deux contributeurs.


Ce n’est pas que cela ne soit permis, pourvu qu’on n’en confonde par les conséquences, et qu’on ne les étende pas de l’une à l’autre.

Mais si l’on tombe dans ce vice, on peut lui opposer un remède très sûr et très infaillible : c’est de substituer mentalement la définition à la place du défini, et d’avoir toujours la définition si présente, que toutes les fois qu’on parle, par exemple, de nombre pair, on entende précisément que c’est celui qui est divisible en deux parties égales, et que ces deux choses soient tellement jointes et inséparables dans la pensée, qu’aussitôt que le discours en exprime l’une, l’esprit y attache immédiatement l’autre. Car les géomètres et tous ceux qui agissent méthodiquement, n’imposent des noms aux choses que pour abréger le discours, et non pour diminuer ou changer l’idée des choses dont ils discourent. Et ils prétendent que l’esprit supplée toujours la définition entière aux termes courts, qu’ils n’emploient que pour éviter la confusion que la multitude des paroles apporte. Rien n’éloigne plus promptement et plus puissamment les surprises captieuses des sophistes que cette méthode, qu’il faut avoir toujours présente, et qui suffit seule pour bannir toutes sortes de difficultés et d’équivoques.

Ces choses étant bien entendues, je reviens à l’explication du véritable ordre, qui consiste, comme je disais, à tout définir et à tout prouver. Certainement cette méthode seroit belle, mais elle est absolument impossible : car il est évident que les premiers termes qu’on voudroit définir, en supposeraient de précédents pour servir à leur explication, et que de même les premières propositions qu’on voudroit prouver en supposeroient d’autres qui les précédassent ; et ainsi il est clair qu’on n’arriverait jamais aux premières. Aussi, en poussant les recherches de plus en plus, on arrive nécessairement à des mots primitifs qu’on ne peut plus définir, et à des principes si clairs qu’on n’en trouve plus qui le soient davantage pour servir à leur preuve. D’où il paraît que les hommes sont dans une impuissance naturelle et immuable de traiter quelque science que ce soit dans un ordre absolument accompli.

Mais il ne s’ensuit pas de là qu’on doive abandonner toute sorte d’ordre. Car il y en a un, et c’est celui de la géométrie, qui est à la vérité inférieur en ce qu’il est moins convaincant, mais non pas en ce qu’il est moins certain. Il ne définit pas tout et ne prouve pas tout, et c’est en cela qu’il lui cède ; mais il ne suppose que des choses claires et constantes par la lumière naturelle, et c’est pourquoi il est parfaitement véritable, la nature le soutenant au défaut du discours. Cet ordre, le plus parfait entre les hommes, consiste non pas à tout définir ou à tout démontrer, ni aussi à ne rien définir ou à ne rien démontrer, mais à se tenir dans ce milieu de ne point définir les choses claires et entendues de tous les hommes, et de définir toutes les autres ; et de ne point prouver toutes les choses connues des hommes, et de prouver toutes les autres. Contre cet ordre pèchent également ceux qui entreprennent de tout définir et de tout prouver et ceux qui négligent de le faire dans les choses qui ne sont pas évidentes d’elles-mêmes.

C’est ce que la géométrie enseigne parfaitement. Elle ne définit aucune