La Science et l’Hypothèse/Chapitre 7

Flammarion (p. 135-147).

CHAPITRE VII

Le Mouvement relatif et le Mouvement absolu.



Le principe du mouvement relatif. — On a quelquefois cherché à rattacher la loi de l’accélération à un principe plus général. Le mouvement d’un système quelconque doit obéir aux mêmes lois, qu’on le rapporte à des axes fixes, ou à des axes mobiles entraînés dans un mouvement rectiligne et uniforme. C’est là le principe du mouvement relatif, qui s’impose à nous pour deux raisons : d’abord, l’expérience la plus vulgaire le confirme, et ensuite l’hypothèse contraire répugnerait singulièrement à l’esprit.

Admettons-le donc, et considérons un corps soumis à une force ; le mouvement relatif de ce corps, par rapport à un observateur animé d’une vitesse uniforme égale à la vitesse initiale du corps, devra être identique à ce que serait son mouvement absolu s’il partait du repos. On en conclut que son accélération ne doit pas dépendre de sa vitesse absolue, on a même cherché à tirer de là une démonstration de la loi d’accélération.

Il y a eu longtemps des traces de cette démonstration dans les programmes du baccalauréat ès sciences. Il est évident que cette tentative est vaine. L’obstacle qui nous empêchait de démontrer la loi d’accélération, c’est que nous n’avions pas de définition de la force ; cet obstacle subsiste tout entier, puisque le principe invoqué ne nous a pas fourni la définition qui nous manquait.

Le principe du mouvement relatif n’en est pas moins fort intéressant et mérite d’être étudié pour lui-même. Cherchons d’abord à l’énoncer d’une façon précise.

Nous avons dit plus haut que les accélérations des différents corps qui font partie d’un système isolé ne dépendent que de leurs vitesses et de leurs positions relatives, et non de leurs vitesses et de leurs positions absolues, pourvu que les axes mobiles auxquels le mouvement relatif est rapporté soient entraînés dans un mouvement rectiligne et uniforme. Ou, si l’on aime mieux, leurs accélérations ne dépendent que des différences de leurs vitesses et des différences de leurs coordonnées, et non des valeurs absolues de ces vitesses et de ces coordonnées.

Si ce principe est vrai pour les accélérations relatives, ou mieux pour les différences d’accélération, en le combinant avec la loi de la réaction, on en déduira qu’il est vrai encore pour les accélérations absolues.

Il reste donc à voir comment on peut démontrer que les différences des accélérations ne dépendent que des différences des vitesses et des coordonnées, ou, pour parler le langage mathématique, que ces différences de coordonnées satisfont à des équations différentielles du second ordre.

Cette démonstration peut-elle être déduite d’expériences ou de considérations à priori ?

En se rappelant ce que nous avons dit plus haut, le lecteur fera de lui-même la réponse.

Ainsi énoncé, en effet, le principe du mouvement relatif ressemble singulièrement à ce que j’appelais plus haut le principe de l’inertie généralisé ; ce n’est pas tout à fait la même chose, puisqu’il s’agit des différences de coordonnées et non des coordonnées elles-mêmes. Le nouveau principe nous apprend donc quelque chose de plus que l’ancien, mais la même discussion s’y applique et conduirait aux mêmes conclusions ; il est inutile d’y revenir.

L’Argument de Newton. — Ici, nous rencontrons une question fort importante et même un peu troublante. J’ai dit que le principe du mouvement relatif n’était pas seulement pour nous un résultat d’expérience, et qu’à priori toute hypothèse contraire répugnerait à l’esprit.

Mais alors, pourquoi le principe n’est-il vrai que si le mouvement des axes mobiles est rectiligne et uniforme ? Il semble qu’il devrait s’imposer à nous avec la même force, si ce mouvement est varié ou tout au moins s’il se réduit à une rotation uniforme. Or, dans ces deux cas, le principe n’est pas vrai.

Je n’insisterai pas longtemps sur le cas où le mouvement des axes est rectiligne sans être uniforme ; le paradoxe ne résiste pas à un instant d’examen. Si je suis en wagon, et si le train, heurtant un obstacle quelconque, s’arrête brusquement, je serai projeté sur la banquette opposée, bien que je n’aie été soumis directement à aucune force. Il n’y a rien là de mystérieux ; si je n’ai subi l’action d’aucune force extérieure, le train, lui, a éprouvé un choc extérieur. Que le mouvement relatif de deux corps se trouve troublé, dès que le mouvement de l’un ou de l’autre est modifié par une cause extérieure, il ne peut rien y avoir là de paradoxal.

Je m’arrêterai plus longtemps sur le cas des mouvements relatifs rapportés à des axes qui tournent d’une rotation uniforme. Si le ciel était sans cesse couvert de nuages, si nous n’avions aucun moyen d’observer les astres, nous pourrions, néanmoins, conclure que la terre tourne ; nous en serions avertis par son aplatissement, ou bien encore par l’expérience du pendule de Foucault.

Et pourtant, dans ce cas, dire que la terre tourne, cela aurait-il un sens ? S’il n’y a pas d’espace absolu, peut-on tourner sans tourner par rapport à quelque chose, et d’autre part comment pourrions-nous admettre la conclusion de Newton et croire à l’espace absolu ?

Mais il ne suffit pas de constater que toutes les solutions possibles nous choquent également ; il faut analyser, pour chacune d’elles, les raisons de notre répugnance, afin de faire notre choix en connaissance de cause. On excusera donc la longue discussion qui va suivre.

Reprenons notre fiction : d’épais nuages cachent les astres aux hommes, qui ne peuvent les observer et en ignorent même l’existence ; comment ces hommes sauront-ils que la terre tourne ? Plus encore que nos ancêtres sans doute, ils regarderont le sol qui les porte comme fixe et inébranlable ; ils attendront bien plus longtemps l’avènement d’un Copernic. Mais enfin ce Copernic finirait par venir ; comment viendrait-il ?

Les mécaniciens de ce monde ne se heurteraient pas d’abord à une contradiction absolue. Dans la théorie du mouvement relatif, on envisage, en dehors des forces réelles, deux forces fictives que l’on appelle la force centrifuge ordinaire et la force centrifuge composée. Nos savants imaginaires pourraient donc tout expliquer en regardant ces deux forces comme réelles, et ils ne verraient pas là de contradiction avec le principe de l’inertie généralisé, car ces forces dépendraient, l’une des positions relatives des diverses parties du système, comme les attractions réelles, l’autre de leurs vitesses relatives, comme les frottements réels.

Bien des difficultés cependant ne tarderaient pas à éveiller leur attention ; s’ils réussissaient à réaliser un système isolé, le centre de gravité de ce système n’aurait pas une trajectoire à peu près rectiligne. Ils pourraient invoquer, pour expliquer ce fait, les forces centrifuges qu’ils regarderaient comme réelles et qu’ils attribueraient sans doute aux actions mutuelles des corps. Seulement ils ne verraient pas ces forces s’annuler aux grandes distances, c’est-à-dire à mesure que l’isolement serait mieux réalisé ; loin de là : la force centrifuge croît indéfiniment avec la distance.

Cette difficulté leur semblerait déjà assez grande ; et pourtant elle ne les arrêterait pas longtemps : ils imagineraient bientôt quelque milieu très subtil, analogue à notre éther, où tous les corps baigneraient et qui exerceraient sur eux une action répulsive.

Mais ce n’est pas tout. L’espace est symétrique, et pourtant les lois du mouvement ne présenteraient pas de symétrie ; elles devraient distinguer entre la droite et la gauche. On verrait par exemple que les cyclones tournent toujours dans le même sens, tandis que par raison de symétrie ces météores devraient tourner indifféremment dans un sens et dans l’autre. Si nos savants étaient parvenus à force de travail à rendre leur univers parfaitement symétrique, cette symétrie ne subsisterait pas, bien qu’il n’y ait aucune raison apparente pour qu’elle soit troublée dans un sens plutôt que dans l’autre.

Ils s’en tireraient sans aucun doute, ils inventeraient quelque chose qui ne serait pas plus extraordinaire que les sphères de verre de Ptolémée, et on irait ainsi, accumulant les complications, jusqu’à ce que le Copernic attendu les balaye toutes d’un seul coup, en disant : Il est bien plus simple d’admettre que la terre tourne.

Et de même que notre Copernic à nous nous a dit : il est plus commode de supposer que la terre tourne, parce qu’on exprime ainsi les lois de l’astronomie dans un langage bien plus simple ; celui-là dirait : Il est plus commode de supposer que la terre tourne, parce qu’on exprime ainsi les lois de la mécanique dans un langage bien plus simple.

Cela n’empêche pas que l’espace absolu, c’est-à-dire le repère auquel il faudrait rapporter la terre pour savoir si réellement elle tourne, n’a aucune existence objective. Dès lors, cette affirmation : « la terre tourne », n’a aucun sens, puisqu’aucune expérience ne permettra de la vérifier ; puisqu’une telle expérience, non seulement ne pourrait être ni réalisée, ni rêvée par le Jules Verne le plus hardi, mais ne peut être conçue sans contradiction ; ou plutôt ces deux propositions : « la terre tourne », et : « il est plus commode de supposer que la terre tourne », ont un seul et même sens ; il n’y a rien de plus dans l’une que dans l’autre.

Peut-être ne se contentera-t-on pas encore de cela, et trouvera-t-on déjà choquant que, parmi toutes les hypothèses ou plutôt toutes les conventions que nous pouvons faire à ce sujet, il y en ait une qui soit plus commode que les autres.

Mais si on l’a admis sans peine quand il s’agissait des lois de l’astronomie, pourquoi s’en choquerait-on en ce qui concerne la mécanique ?

Nous avons vu que les coordonnées des corps sont déterminées par des équations différentielles du second ordre, et qu’il en est de même des différences de ces coordonnées. C’est ce que nous avons appelé le principe d’inertie généralisé et le principe du mouvement relatif. Si les distances de ces corps étaient déterminées de même par des équations du second ordre, il semble que l’esprit devrait être entièrement satisfait. Dans quelle mesure l’esprit reçoit-il cette satisfaction, et pourquoi ne s’en contente-t-il pas ?

Pour nous en rendre compte, il vaut mieux prendre un exemple simple. Je suppose un système analogue à notre système solaire, mais d’où l’on ne puisse apercevoir des étoiles fixes étrangères à ce système, de telle façon que les astronomes ne puissent observer que les distances mutuelles des planètes et du soleil, et non les longitudes absolues des planètes. Si nous déduisons directement de la loi de Newton les équations différentielles qui définissent la variation de ces distances, ces équations ne seront pas du second ordre. Je veux dire que si, outre la loi de Newton, on connaissait les valeurs initiales de ces distances et de leurs dérivées par rapport au temps, cela ne suffirait pas pour déterminer les valeurs de ces mêmes distances à un instant ultérieur. Il manquerait encore une donnée, et cette donnée, ce pourrait être par exemple ce que les astronomes appellent la constante des aires.

Mais ici, on peut se placer à deux points de vue différents ; nous pouvons distinguer deux sortes de constantes. Aux yeux du physicien, le monde se réduit à une série de phénomènes, dépendant uniquement, d’une part, des phénomènes initiaux, d’autre part, des lois qui lient les conséquents aux antécédents. Si alors l’observation nous apprend qu’une certaine quantité est une constante, nous aurons le choix entre deux manières de voir.

Ou bien nous admettrons qu’il y a une loi qui veut que cette quantité ne puisse varier, mais que c’est par hasard qu’elle s’est trouvée avoir, à l’origine des siècles, telle valeur plutôt que telle autre, valeur qu’elle a dû conserver depuis. Cette quantité pourrait alors s’appeler une constante accidentelle.

Ou bien nous admettrons au contraire qu’il y a une loi de la nature qui impose à cette quantité telle valeur et non pas telle autre. Nous aurons alors ce qu’on peut appeler une constante essentielle.

Par exemple, en vertu des lois de Newton, la durée de la révolution de la terre doit être constante. Mais si elle est égale à 366 jours sidéraux et quelque chose et non à 300 ou à 400, c’est par suite de je ne sais quel hasard initial. C’est une constante accidentelle. Si au contraire l’exposant de la distance qui figure dans l’expression de la force attractive, est égal à — 2 et non pas — 3, ce n’est pas par hasard, c’est parce que la loi de Newton l’exige. C’est une constante essentielle.

Je ne sais si cette manière de faire au hasard sa part est légitime en soi, et si cette distinction n’a pas quelque chose d’artificiel ; il est certain du moins que, tant que la nature aura des secrets, elle sera dans l’application fortement arbitraire et toujours précaire.

En ce qui concerne la constante des aires, nous avons coutume de la regarder comme accidentelle. Est-il certain que nos astronomes imaginaires en feraient autant ? S’ils avaient pu comparer deux systèmes solaires différents, ils auraient l’idée que cette constante peut avoir plusieurs valeurs différentes ; mais j’ai justement supposé au début que leur système apparaissait comme isolé, et qu’ils n’observaient aucun astre qui y fût étranger. Dans ces conditions, ils ne pourraient voir qu’une constante unique qui aurait une valeur unique absolument invariable ; ils seraient portés sans aucun doute à la regarder comme une constante essentielle.

Un mot en passant pour prévenir une objection : les habitants de ce monde fictif ne pourraient ni observer ni définir la constante des aires comme nous le faisons, puisque les longitudes absolues leur échappent ; cela n’empêcherait pas qu’ils seraient rapidement amenés à remarquer une certaine constante qui s’introduirait naturellement dans leurs équations et qui ne serait autre chose que ce que nous appelons la constante des aires.

Mais alors voici ce qui va se passer. Si la constante des aires est regardée comme essentielle, comme dépendant d’une loi de la nature, il suffira, pour calculer les distances des planètes à un instant quelconque, de connaître les valeurs initiales de ces distances et celles de leurs dérivées premières. À ce point de vue nouveau, les distances seront régies par des équations différentielles du deuxième ordre.

L’esprit de ces astronomes serait-il cependant satisfait complètement ? Je ne le crois pas ; d’abord, ils s’apercevraient bientôt qu’en différenciant leurs équations, de façon à en élever l’ordre, ces équations deviennent bien plus simples. Et surtout ils seraient frappés de la difficulté qui provient de la symétrie. Il faudrait admettre des lois différentes, selon que l’ensemble des planètes présenterait la figure d’un certain polyèdre ou bien du polyèdre symétrique, et on n’échapperait à cette conséquence qu’en regardant la constante des aires comme accidentelle.

J’ai pris un exemple bien particulier, puisque j’ai supposé des astronomes qui ne s’occuperaient pas du tout de mécanique terrestre et dont la vue serait bornée au système solaire. Mais nos conclusions s’appliquent à tous les cas. Notre univers est plus étendu que le leur, puisque nous avons des étoiles fixes, mais il est cependant limité, lui aussi, et alors nous pourrions raisonner sur l’ensemble de notre univers, comme ces astronomes sur leur système solaire.

On voit ainsi qu’en définitive on serait conduit à conclure que les équations qui définissent les distances sont d’ordre supérieur au second. Pourquoi en serions-nous choqués, pourquoi trouvons-nous tout naturel que la suite des phénomènes dépende des valeurs initiales des dérivées premières de ces distances, tandis que nous hésitons à admettre qu’elles puissent dépendre des valeurs initiales des dérivées secondes ? Ce ne peut être qu’à cause des habitudes d’esprit créées en nous par l’étude constante du principe d’inertie généralisé et de ses conséquences.

Les valeurs des distances à un instant quelconque dépendent de leurs valeurs initiales, de celles de leurs dérivées premières et encore d’autre chose. Qu’est-ce que cette autre chose ?

Si l’on ne veut pas que ce soit tout simplement l’une des dérivées secondes, on n’a que le choix des hypothèses. Supposer, comme on le fait d’ordinaire, que cette autre chose c’est l’orientation absolue de l’univers dans l’espace, ou la rapidité avec laquelle cette orientation varie, cela peut être, cela est certainement la solution la plus commode pour le géomètre ; ce n’est pas la plus satisfaisante pour le philosophe, puisque cette orientation n’existe pas.

On peut supposer que cette autre chose est la position ou la vitesse de quelque corps invisible ; c’est ce qu’ont fait certaines personnes qui l’ont même appelé le corps alpha, bien que nous soyons destinés à ne jamais rien savoir de ce corps que son nom. C’est là un artifice tout à fait analogue à celui dont je parlais à la fin du paragraphe consacré à mes réflexions sur le principe d’inertie.

Mais en somme la difficulté est artificielle. Pourvu que les indications futures de nos instruments ne puissent dépendre que des indications qu’ils nous ont données ou qu’ils auraient pu donner autrefois, c’est tout ce qu’il faut. Or, sous ce rapport nous pouvons être tranquilles.