La Science et l’Hypothèse/Chapitre 3

Flammarion (p. 49-67).

DEUXIÈME PARTIE

L’ESPACE



CHAPITRE III

Les géométries non euclidiennes.



Toute conclusion suppose des prémisses ; ces prémisses elles-mêmes ou bien sont évidentes par elles-mêmes et n’ont pas besoin de démonstration, ou bien ne peuvent être établies qu’en s’appuyant sur d’autres propositions, et comme on ne saurait remonter ainsi à l’infini, toute science déductive, et en particulier la géométrie, doit reposer sur un certain nombre d’axiomes indémontrables. Tous les traités de géométrie débutent donc par l’énoncé de ces axiomes. Mais il y a entre eux une distinction à faire : quelques-uns, comme celui-ci par exemple : « deux quantités égales à une même troisième sont égales entre elles », ne sont pas des propositions de géométrie, mais des propositions d’analyse. Je les regarde comme des jugements analytiques a priori, je ne m’en occuperai pas.

Mais je dois insister sur d’autres axiomes qui sont spéciaux à la géométrie. La plupart des traités en énoncent trois explicitement :

1o Par deux points ne peut passer qu’une droite ;

2o La ligne droite est le plus court chemin d’un point à un autre.

3o Par un point on ne peut faire passer qu’une parallèle à une droite donnée.

Bien que l’on se dispense généralement de démontrer le second de ces axiomes, il serait possible de le déduire des deux autres et de ceux, beaucoup plus nombreux, que l’on admet implicitement sans les énoncer, ainsi que je l’expliquerai plus loin.

On a longtemps cherché en vain à démontrer également le troisième axiome, connu sous le nom de postulatum d’Euclide. Ce qu’on a dépensé d’efforts dans cet espoir chimérique est vraiment inimaginable. Enfin au commencement du siècle et à peu près en même temps, deux savants, un Russe et un Hongrois, Lobatchevsky et Bolyai établirent d’une façon irréfutable que cette démonstration est impossible ; ils nous ont à peu près débarrassés des inventeurs de géométries sans postulatum ; depuis lors l’Académie des Sciences ne reçoit plus guère qu’une ou deux démonstrations nouvelles par an.

La question n’était pas épuisée ; elle ne tarda pas à faire un grand pas par la publication du célèbre mémoire de Riemann intitulé : Ueber die Hypothesen welche der Geometrie zum Grunde liegen. Cet opuscule a inspiré la plupart des travaux récents dont je parlerai plus loin et parmi lesquels il convient de citer ceux de Beltrami et de Helmholtz.


La Géométrie de Lobatchevsky. — S’il était possible de déduire le postulatum d’Euclide des autres axiomes, il arriverait évidemment qu’en niant le postulatum, et en admettant les autres axiomes, on serait conduit à des conséquences contradictoires ; il serait donc impossible d’appuyer sur de telles prémisses une géométrie cohérente.

Or c’est précisément ce qu’a fait Lobatchevsky. Il suppose au début que :

L’on peut par un point mener plusieurs parallèles à une droite donnée ;

Et il conserve d’ailleurs tous les autres axiomes d’Euclide. De ces hypothèses, il déduit une suite de théorèmes entre lesquels il est impossible de relever aucune contradiction et il construit une géométrie dont l’impeccable logique ne le cède en rien à celle de la géométrie euclidienne.

Les théorèmes sont, bien entendu, très différents de ceux auxquels nous sommes accoutumés et ils ne laissent pas de déconcerter un peu d’abord.

Ainsi la somme des angles d’un triangle est toujours plus petite que deux droits et la différence entre cette somme et deux droits est proportionnelle à la surface du triangle.

Il est impossible de construire une figure semblable à une figure donnée mais de dimensions différentes.

Si l’on divise une circonférence en n parties égales, et qu’on mène des tangentes aux points de division, ces n tangentes formeront un polygone si le rayon de la circonférence est assez petit ; mais si ce rayon est assez grand, elles ne se rencontreront pas.

Il est inutile de multiplier ces exemples ; les propositions de Lobatchevsky n’ont plus aucun rapport avec celles d’Euclide, mais elles ne sont pas moins logiquement reliées les unes aux autres.


La Géométrie de Riemann. — Imaginons un monde uniquement peuplé d’êtres dénués d’épaisseur ; et supposons que ces animaux « infiniment plats » soient tous dans un même plan et n’en puissent sortir. Admettons de plus que ce monde soit assez éloigné des autres pour être soustrait à leur influence. Pendant que nous sommes en train de faire des hypothèses, il ne nous en coûte pas plus de douer ces êtres de raisonnement et de les croire capables de faire de la géométrie. Dans ce cas, ils n’attribueront certainement à l’espace que deux dimensions.

Mais supposons maintenant que ces animaux imaginaires, tout en restant dénués d’épaisseur, aient la forme d’une figure sphérique, et non d’une figure plane et soient tous sur une même sphère sans pouvoir s’en écarter. Quelle géométrie pourront-ils construire ? Il est clair d’abord qu’ils n’attribueront à l’espace que deux dimensions ; ce qui jouera pour eux le rôle de la ligne droite, ce sera le plus court chemin d’un point à un autre sur la sphère, c’est-à-dire un arc de grand cercle, en un mot leur géométrie sera la géométrie sphérique.

Ce qu’ils appelleront l’espace, ce sera cette sphère d’où ils ne peuvent sortir et sur laquelle se passent tous les phénomènes dont ils peuvent avoir connaissance. Leur espace sera donc sans limites puisqu’on peut sur une sphère aller toujours devant soi sans jamais être arrêté, et cependant il sera fini ; on n’en trouvera jamais le bout, mais on pourra en faire le tour.

Eh bien, la géométrie de Riemann, c’est la géométrie sphérique étendue à trois dimensions. Pour la construire, le mathématicien allemand a dû jeter par-dessus bord, non seulement le postulatum d’Euclide, mais encore le premier axiome : Par deux points on ne peut faire passer qu’une droite.

Sur une sphère, par deux points donnés on ne peut faire en général passer qu’un grand cercle (qui, comme nous venons de le voir, jouerait le rôle de la droite pour nos êtres imaginaires), mais il y a une exception : si les deux points donnés sont diamétralement opposés, on pourra faire passer par ces deux points une infinité de grands cercles.

De même dans la géométrie de Riemann (au moins sous une de ses formes), par deux points ne passera en général qu’une seule droite ; mais il y a des cas exceptionnels où par deux points pourront passer une infinité de droites.

Il y a une sorte d’opposition entre la géométrie de Riemann et celle de Lobatchevsky.

Ainsi la somme des angles d’un triangle est :

Égale à deux droits dans la géométrie d’Euclide.

Plus petite que deux droits dans celle de Lobatchevsky.

Plus grande que deux droits dans celle de Riemann.

Le nombre des parallèles qu’on peut mener à une droite donnée par un point donné est égal :

À un dans la géométrie d’Euclide,

À zéro dans celle de Riemann,

À l’infini dans celle de Lobatchevsky.

Ajoutons que l’espace de Riemann est fini, quoique sans limite, au sens donné plus haut à ces deux mots.


Les surfaces à courbure constante. — Une objection restait possible cependant. Les théorèmes de Lobatchevsky et de Riemann ne présentent aucune contradiction ; mais quelque nombreuses que soient les conséquences que ces deux géomètres ont tirées de leurs hypothèses, ils ont dû s’arrêter avant de les avoir toutes épuisées, car le nombre en serait infini ; qui nous dit alors que s’ils avaient poussé plus loin leurs déductions, ils n’auraient pas fini par arriver à quelque contradiction ?

Cette difficulté n’existe pas pour la géométrie de Riemann, pourvu qu’on se borne à deux dimensions ; la géométrie de Riemann à deux dimensions ne diffère pas en effet, nous l’avons vu, de la géométrie sphérique, qui n’est qu’une branche de la géométrie ordinaire et qui est par conséquent en dehors de toute discussion.

M. Beltrami, en ramenant de même la géométrie de Lobatchevsky à deux dimensions à ne plus être qu’une branche de la géométrie ordinaire, a réfuté également l’objection en ce qui la concerne

Voici comment il y est parvenu. Considérons sur une surface une figure quelconque. Imaginons que cette figure soit tracée sur une toile flexible et inextensible appliquée sur cette surface, de telle façon que quand la toile se déplace et se déforme, les diverses lignes de cette figure puissent changer de forme, sans changer de longueur. En général, cette figure flexible et inextensible ne pourra se déplacer sans quitter la surface ; mais il y a certaines surfaces particulières pour lesquelles un pareil mouvement serait possible : ce sont les surfaces à courbure constante.

Si nous reprenons la comparaison que nous faisions plus haut et que nous imaginions des êtres sans épaisseur vivant sur une de ces surfaces, ils regarderont comme possible le mouvement d’une figure dont toutes les lignes conservent une longueur constante. Un pareil mouvement paraîtrait absurde, au contraire, à des animaux sans épaisseur vivant sur une surface à courbure variable.

Ces surfaces à courbure constante sont de deux sortes :

Les unes sont à courbure positive, et peuvent être déformées de façon à être appliquées sur une sphère. La géométrie de ces surfaces se réduit donc à la géométrie sphérique, qui est celle de Riemann.

Les autres sont à courbure négative. M. Beltrami a fait voir que la géométrie de ces surfaces n’est autre que celle de Lobatchevsky. Les géométries à deux dimensions de Riemann et de Lobatchevsky se trouvent donc rattachées à la géométrie euclidienne.


Interprétation des géométries non euclidiennes. — Ainsi s’évanouit l’objection en ce qui concerne les géométries à deux dimensions.

Il serait aisé d’étendre le raisonnement de M. Beltrami aux géométries à trois dimensions. Les esprits que ne rebute pas l’espace à quatre dimensions n’y verront aucune difficulté, mais ils sont peu nombreux. Je préfère donc procéder autrement.

Considérons un certain plan que j’appellerai fondamental et construisons une sorte de dictionnaire, en faisant correspondre chacun à chacun une double suite de termes écrits dans deux colonnes, de la même façon que se correspondent dans les dictionnaires ordinaires les mots de deux langues dont la signification est la même :

Espace.    .    .    .    .    
Portion de l’espace située au-dessus du plan fondamental.
Plan.    .    .    .    .    .    
Sphère coupant orthogonalement le plan fondamental.
Droite.   .     .     .     .     
Cercle coupant orthogonalement le plan fondamental.
Sphère.    .    .    .    .    
Sphère.
Cercle.  .     .     .     .     
Cercle.
Angle.   .     .     .     .     
Angle.
Distance de deux
points.   .    .    .    .    

Logarithme du rapport anharmonique de ces deux points et des intersections du plan fondamental avec un cercle passant par ces deux points et le coupant orthogonalement.
etc… etc…

Prenons ensuite les théorèmes de Lobatchevsky et traduisons-les à l’aide de ce dictionnaire comme nous traduirions un texte allemand à l’aide d’un dictionnaire allemand-français. Nous obtiendrons ainsi des théorèmes de la géométrie ordinaire.

Par exemple, ce théorème de Lobatchevsky : « la somme des angles d’un triangle est plus petite que deux droits » se traduit ainsi : « Si un triangle curviligne a pour côtés des arcs de cercle qui prolongés iraient couper orthogonalement le plan fondamental, la somme des angles de ce triangle curviligne sera plus petite que deux droits ». Ainsi, quelque loin que l’on pousse les conséquences des hypothèses de Lobatchevsky, on ne sera jamais conduit à une contradiction. En effet, si deux théorèmes de Lobatchevsky étaient contradictoires, il en serait de même des traductions de ces deux théorèmes, faites à l’aide de notre dictionnaire, mais ces traductions sont des théorèmes de géométrie ordinaire et personne ne doute que la géométrie ordinaire ne soit exempte de contradiction. D’où nous vient cette certitude et est-elle justifiée ? C’est là une question que je ne saurais traiter ici, car elle exigerait quelques développements. Il ne reste donc plus rien de l’objection que j’ai formulée plus haut.

Ce n’est pas tout. La géométrie de Lobatchevsky, susceptible d’une interprétation concrète, cesse d’être un vain exercice de logique et peut recevoir des applications ; je n’ai pas le temps de parler ici de ces applications ni du parti que M. Klein et moi en avons tiré pour l’intégration des équations linéaires.

Cette interprétation n’est d’ailleurs pas unique, et l’on pourrait établir plusieurs dictionnaires analogues à celui qui précède et qui tous permettraient par une simple « traduction » de transformer les théorèmes de Lobatchevsky en théorèmes de géométrie ordinaire.


Les axiomes implicites. — Les axiomes explicitement énoncés dans les traités sont-ils les seuls fondements de la géométrie ? On peut être assuré du contraire en voyant qu’après les avoir successivement abandonnés on laisse encore debout quelques propositions communes aux théories d’Euclide, de Lobatchevsky et de Riemann. Ces propositions doivent reposer sur quelques prémisses que les géomètres admettent sans les énoncer. Il est intéressant de chercher à les dégager des démonstrations classiques.

Stuart Mill a prétendu que toute définition contient un axiome, puisqu’en définissant on affirme implicitement l’existence de l’objet défini. C’est aller beaucoup trop loin ; il est rare qu’en mathématiques on donne une définition sans la faire suivre par la démonstration de l’existence de l’objet défini, et quand on s’en dispense, c’est généralement que le lecteur y peut aisément suppléer. Il ne faut pas oublier que le mot existence n’a pas le même sens quand il s’agit d’un être mathématique et quand il est question d’un objet matériel. Un être mathématique existe, pourvu que sa définition n’implique pas contradiction, soit en elle-même, soit avec les propositions antérieurement admises.

Mais si l’observation de Stuart Mill ne saurait s’appliquer à toutes les définitions, elle n’en est pas moins juste pour quelques-unes d’entre elles. On définit quelquefois le plan de la manière suivante :

Le plan est une surface telle que la droite qui joint deux quelconques de ses points est tout entière sur cette surface.

Cette définition cache manifestement un nouvel axiome ; on pourrait, il est vrai, la changer, et cela vaudrait mieux, mais alors il faudrait énoncer l’axiome explicitement.

D’autres définitions peuvent donner lieu à des réflexions non moins importantes.

Telle est par exemple celle de l’égalité de deux figures : deux figures sont égales quand on peut les superposer ; pour les superposer il faut déplacer l’une d’elles jusqu’à ce qu’elle coïncide avec l’autre ; mais comment faut-il la déplacer ? Si nous le demandions, on nous répondrait sans doute qu’on doit le faire sans la déformer et à la façon d’un solide invariable. Le cercle vicieux serait alors évident.

En fait, cette définition ne définit rien ; elle n’aurait aucun sens pour un être qui habiterait un monde où il n’y aurait que des fluides. Si elle nous semble claire, c’est que nous sommes habitués aux propriétés des solides naturels qui ne diffèrent pas beaucoup de celles des solides idéaux dont toutes les dimensions sont invariables.

Cependant, tout imparfaite qu’elle soit, cette définition implique un axiome.

La possibilité du mouvement d’une figure invariable n’est pas une vérité évidente par elle-même, ou du moins elle ne l’est qu’à la façon du postulatum d’Euclide et non comme le serait un jugement analytique a priori.

D’ailleurs, en étudiant les définitions et les démonstrations de la géométrie, on voit qu’on est obligé d’admettre, sans les démontrer, non seulement la possibilité de ce mouvement, mais encore quelques-unes de ses propriétés.

C’est ce qui ressort d’abord de la définition de la ligne droite. On en a donné beaucoup de défectueuses, mais la véritable est celle qui est sous-entendue dans toutes les démonstrations où la ligne droite intervient :

« Il peut arriver que le mouvement d’une figure invariable soit tel que tous les points d’une ligne appartenant à cette figure restent immobiles pendant que tous les points situés en dehors de cette ligne se meuvent. Une pareille ligne s’appellera une ligne droite ». Nous avons à dessein, dans cet énoncé, séparé la définition de l’axiome qu’elle implique.

Beaucoup de démonstrations, telles que celles des cas d’égalité des triangles, de la possibilité d’abaisser une perpendiculaire d’un point sur une droite, supposent des propositions qu’on se dispense d’énoncer, puisqu’elles obligent à admettre qu’il est possible de transporter une figure dans l’espace d’une certaine manière.


La quatrième géométrie. — Parmi ces axiomes implicites, il en est un qui me semble mériter quelque attention, parce qu’en l’abandonnant, on peut construire une quatrième géométrie aussi cohérente que celles d’Euclide, de Lobatchevsky et de Riemann.

Pour démontrer que l’on peut toujours élever en un point A une perpendiculaire à une droite AB, on considère une droite AC mobile autour du point A et primitivement confondue avec la droite fixe AB ; et on la fait tourner autour du point A jusqu’à ce qu’elle vienne dans le prolongement de AB.

On suppose ainsi deux propositions : d’abord qu’une pareille rotation est possible, et ensuite qu’elle peut se continuer jusqu’à ce que les deux droites viennent dans le prolongement l’une de l’autre.

Si l’on admet le premier point et que l’on rejette le second, on est conduit à une suite de théorèmes encore plus étranges que ceux de Lobatchevsky et de Riemann, mais également exempts de contradiction.

Je ne citerai qu’un de ces théorèmes et je ne choisirai pas le plus singulier : une droite réelle peut être perpendiculaire à elle-même.


Le Théorème de Lie. — Le nombre des axiomes implicitement introduits dans les démonstrations classiques est plus grand qu’il ne serait nécessaire, et on cherche à le réduire au minimum. M. Hilbert semble avoir donné la solution définitive de ce problème. On pouvait a priori se demander d’abord si cette réduction est possible, si le nombre des axiomes nécessaires et celui des géométries imaginables n’est pas infini.

Un théorème de M. Sophus Lie domine toute cette discussion. On peut l’énoncer ainsi :

Supposons qu’on admette les prémisses suivantes :

1o L’espace a n dimensions ;

2o Le mouvement d’une figure invariable est possible.

3o Il faut p conditions pour déterminer la position de cette figure dans l’espace.

Le nombre des géométries compatibles avec ces prémisses sera limité.

Je puis même ajouter que si n est donné, on peut assigner à p une limite supérieure.

Si donc on admet la possibilité du mouvement, on ne pourra inventer qu’un nombre fini (et même assez restreint) de géométries à trois dimensions.


Les géométries de Riemann. — Cependant ce résultat semble contredit par Riemann, car ce savant construit une infinité de géométries différentes, et celle à laquelle on donne ordinairement son nom n’en est qu’un cas particulier.

Tout dépend, dit-il, de la façon dont on définit la longueur d’une courbe. Or il y a une infinité de manières de définir cette longueur, et chacune d’elles peut devenir le point de départ d’une nouvelle géométrie.

Cela est parfaitement exact, mais la plupart de ces définitions sont incompatibles avec le mouvement d’une figure invariable, que l’on suppose possible dans le théorème de Lie. Ces géométries de Riemann, si intéressantes à divers titres, ne pourraient donc jamais être que purement analytiques et ne se prêteraient pas à des démonstrations analogues à celles d’Euclide.


Les Géométries de Hilbert. — Enfin M. Veronese et M. Hilbert ont imaginé de nouvelles géométries plus étranges encore, qu’ils appellent non-archimédiennes. Ils les construisent en rejetant l’axiome d’Archimède en vertu duquel toute longueur donnée, multipliée par un entier suffisamment grand, finira par surpasser toute autre longueur donnée si grande qu’elle soit. Sur une droite non archimédienne, les points de notre géométrie ordinaire existent tous, mais il y en a une infinité d’autres qui viennent s’intercaler entre eux, de telle sorte qu’entre deux segments, que les géomètres de la vieille école auraient regardés comme contigus, on puisse caser une infinité de points nouveaux. En un mot, l’espace non archimédien n’est plus un continu du second ordre, pour employer le langage du chapitre précédent, mais un continu du troisième ordre.


De la nature des axiomes. — La plupart des mathématiciens ne regardent la géométrie de Lobatchevsky que comme une simple curiosité logique ; quelques-uns d’entre eux sont allés plus loin cependant. Puisque plusieurs géométries sont possibles, est-il certain que ce soit la nôtre qui soit vraie ? L’expérience nous apprend sans doute que la somme des angles d’un triangle est égale à deux droits ; mais c’est parce que nous n’opérons que sur des triangles trop petits ; la différence, d’après Lobatchevsky, est proportionnelle à la surface du triangle : ne pourra-t-elle devenir sensible quand nous opérerons sur des triangles plus grands ou quand nos mesures deviendront plus précises ? La géométrie euclidienne ne serait ainsi qu’une géométrie provisoire.

Pour discuter cette opinion, nous devons d’abord nous demander quelle est la nature des axiomes géométriques.

Sont-ce des jugements synthétiques à priori, comme disait Kant ?

Ils s’imposeraient alors à nous avec une telle force, que nous ne pourrions concevoir la proposition contraire, ni bâtir sur elle un édifice théorique. Il n’y aurait pas de géométrie non euclidienne.

Pour s’en convaincre, qu’on prenne un véritable jugement synthétique à priori, par exemple celui-ci, dont nous avons vu au chapitre premier le rôle prépondérant :

Si un théorème est vrai pour le nombre 1, si on a démontré qu’il est vrai de n + 1, pourvu qu’il le soit de n, il sera vrai de tous les nombres entiers positifs.

Qu’on essaie ensuite de s’y soustraire et de fonder, en niant cette proposition, une fausse arithmétique analogue à la géométrie non euclidienne, — on n’y pourra pas parvenir ; on serait même tenté au premier abord de regarder ces jugements comme analytiques.

D’ailleurs, reprenons notre fiction des animaux sans épaisseur ; nous ne pouvons guère admettre que ces êtres, s’ils ont l’esprit fait comme nous, adopteraient la géométrie euclidienne qui serait contredite par toute leur expérience ?

Devons-nous donc conclure que les axiomes de la géométrie sont des vérités expérimentales ? Mais on n’expérimente pas sur des droites ou des circonférences idéales ; on ne peut le faire que sur des objets matériels. Sur quoi porteraient donc les expériences qui serviraient de fondement à la géométrie ? La réponse est facile.

Nous avons vu plus haut que l’on raisonne constamment comme si les figures géométriques se comportaient à la manière des solides. Ce que la géométrie emprunterait à l’expérience, ce seraient donc les propriétés de ces corps.

Les propriétés de la lumière et sa propagation rectiligne ont été aussi l’occasion d’où sont sorties quelques-unes des propositions de la géométrie, et en particulier celles de la géométrie projective, de sorte qu’à ce point de vue on serait tenté de dire que la géométrie métrique est l’étude des solides et que la géométrie projective est celle de la lumière.

Mais une difficulté subsiste, et elle est insurmontable. Si la géométrie était une science expérimentale, elle ne serait pas une science exacte, elle serait soumise à une continuelle révision. Que dis-je ? elle serait dès aujourd’hui convaincue d’erreur puisque nous savons qu’il n’existe pas de solide rigoureusement invariable.

Les axiomes géométriques ne sont donc ni des jugements synthétiques à priori ni des faits expérimentaux.

Ce sont des conventions ; notre choix, parmi toutes les conventions possibles, est guidé par des faits expérimentaux ; mais il reste libre et n’est limité que par la nécessité d’éviter toute contradiction. C’est ainsi que les postulats peuvent rester rigoureusement vrais quand même les lois expérimentales qui ont déterminé leur adoption ne sont qu’approximatives.

En d’autres termes, les axiomes de la géométrie (je ne parle pas de ceux de l’arithmétique) ne sont que des définitions déguisées.

Dès lors, que doit-on penser de cette question : La géométrie euclidienne est-elle vraie ?

Elle n’a aucun sens.

Autant demander si le système métrique est vrai et les anciennes mesures fausses ; si les coordonnées cartésiennes sont vraies et les coordonnées polaires fausses. Une géométrie ne peut pas être plus vraie qu’une autre ; elle peut seulement être plus commode.

Or la géométrie euclidienne est et restera la plus commode :

1o Parce qu’elle est la plus simple ; et elle n’est pas telle seulement par suite de nos habitudes d’esprit ou de je ne sais quelle intuition directe que nous aurions de l’espace euclidien ; elle est la plus simple en soi de même qu’un polynôme du premier degré est plus simple qu’un polynôme du second degré ; les formules de la trigonométrie sphérique sont plus compliquées que celles de la trigonométrie rectiligne, et elles paraîtraient encore telles à un analyste qui en ignorerait la signification géométrique.

2o Parce qu’elle s’accorde assez bien avec les propriétés des solides naturels, ces corps dont se rapprochent nos membres et notre œil et avec lesquels nous faisons nos instruments de mesure.