« La Dynamique de l’électron » : différence entre les versions

Contenu supprimé Contenu ajouté
mAucun résumé des modifications
Ligne 102 :
</center>
 
On sait en quoi consiste le phénomène de l’aberration, découvert par Bradley. La lumière émanée d’une étoile met un certain temps pour parcourir une lunette ; pendant ce temps, la lunette, entraînée par le mouvement de la Terre, s’est déplacée. Si donc on braquait la lunette dans la direction ''vraie'' de l’étoile, l’image se formerait au point qu’occupait la croisée des fils du réticule quand la lumière a atteint l’objectif ; et cette croisée ne serait plus en ce même point quand la lumière atteindrait le plan du réticule. On serait donc conduit à dépointer la lunette pour ramener l’image sur la croisée des fils. Il en résulte que l’astronome ne pointera pas la lunette dans la direction de la vitesse absolue de la lumière, c’est-à-dire sur la position vraie de l’étoile, mais bien dans la direction de la vitesse relative de la lumière par rapport à la Terre, c’est-à-dire sur ce qu’on appelle la position apparente de l’étoile. Sur la figure 1, nous avons représenté en AB la vitesse absolue de la lumière (changée de sens, puisque l’observateur est en A et l’étoile à une grande distance dans la direction AB), en BD la vitesse de la Terre, en AD la vitesse ''relative'' de la lumière (changée de sens) ; l’astronome devrait pointer son instrument dans la direction AB : il le pointe dans la direction AD.
 
La grandeur de AB, c’est-à-dire la vitesse de la lumière, est connue ; on pourrait donc croire que nous avons le moyen de calculer BD, c’est-à-dire la vitesse ''absolue'' de la Terre. (Je m’expliquerai tout à l’heure sur ce mot absolu.) Il n’en est rien ; nous connaissons bien la position apparente de l’étoile, c’est-à-dire la direction AD que nous observons ; mais nous ne connaissons pas sa position vraie : nous ne connaissons ÁB qu’en grandeur et pas en direction.
Ligne 247 :
Dans la nouvelle Dynamique, le Principe d’Inertie est encore vrai, c’est-à-dire qu’un électron ''isolé'' aura un mouvement rectiligne et uniforme. Du moins, on s’accorde généralement à l’admettre ; cependant, Lindemann a fait des objections à cette façon de voir ; je ne veux pas prendre parti dans cette discussion, que je ne puis exposer ici à cause de son caractère trop ardu. Il suffirait en tout cas de légères modifications à la théorie pour se mettre à l’abri des objections de Lindemann.
 
On sait qu’un corps plongé dans un fluide éprouve, quand il est en mouvement, une résistance considérable, mais c’est parce que nos fluides sont visqueux ; dans un fluide idéal, parfaitement dépourvu de viscosité, le corps agiterait derrière lui une poupe liquide, une sorte de sillage ; au départ, il faudrait un grand effort pour le mettre en mouvement, puisqu’il faudrait ébranler non seulement le corps lui-même, mais le liquide de son sillage. Mais, une fois le mouvement acquis, il se perpétuerait sans résistance, puisque le corps, en s’avançant, transporterait simplement avec lui la perturbation du liquide, sans que la force vive totale de ce liquide augmentât. Tout se passerait donc comme si son inertie était augmentée. Un électron s’avançant dans l’éther se comporterait de la même manière : autour de lui, l’éther serait agité, mais cette perturbation accompagnerait le corps dans son mouvement ; de sorte que, pour un observateur entraîné avec l’électron, les champs électrique et magnétique qui accompagnent cet électron paraîtraient invariables, et ne pourraient changer que si la vitesse de l’électron venait à varier. Il faudrait donc un effort pour mettre l’électron en mouvement, puisqu’il faudrait créer l’énergie de ces champs ; au contraire, une fois le mouvement acquis, aucun effort ne serait nécessaire pour le maintenir, puisque l’énergie créée n’aurait plus qu’à se transporter derrière l’électron comme un sillage. Cette énergie ne peut donc qu’augmenter l’inertie de l’électron, comme l’agitation du liquide augmente celle du corps plongé dans un fluide parfait. Et même les électrons négatifs, tout au moins, n’ont pas d’autre inertie que celle-là.
 
Dans l’hypothèse de Lorentz, la force vive, qui n’est autre que l’énergie de l’éther, n’est pas proportionnelle à ''v''², mais à :
Ligne 285 :
Quant à l’onde d’accélération, c’est une perturbation tout à fait analogue aux ondes lumineuses, qui part de l’électron au moment où il subit une accélération, et qui se propage ensuite par ondes sphériques successives avec la vitesse de la lumière.
 
D’où cette conséquence : dans un" mouvement rectiligne et uniforme, l’énergie se conserve intégralement ; mais, dès qu’il y a une accélération, il y a perte d’énergie, qui se dissipe sous forme d’ondes lumineuses et s’en va à l’infini à travers l’éther.
 
Toutefois, les effets de cette onde d’accélération, en particulier la perte d’énergie correspondante, sont négligeables dans la plupart des cas, c’est-à-dire non seulement dans la Mécanique ordinaire et dans les mouvements des corps célestes, mais même dans les rayons du radium, où la vitesse est très grande sans que l’accélération le soit. On peut alors se borner à appliquer les lois de la Mécanique, en écrivant que la force est égale au produit de l’accélération par la masse, cette masse, toutefois, variant avec la vitesse d’après les lois exposées plus haut. On dit alors que le mouvement est ''quasi-stationnaire''.
 
Il n’en serait plus de même dans tous les cas où l’accélération est grande, et dont les principaux sont les suivants : 1° Dans les gaz incandescents, certains électrons prennent un mouvement oscillatoire de très haute fréquence ; les déplacements sont très petits, les vitesses sont finies, et les accélérations très grandes ; l’énergie se communique alors à l’éther, et c’est pour cela que ces gaz rayonnent de la lumière de même période que les oscillations de l’électron ; 2° Inversement, quand un gaz reçoit de la lumière, ces mêmes électrons sont mis en branle avec de fortes accélérations et ils absorbent de la lumière ; 3° Dans l’excitateur de Hertz, les électrons qui circulent dans la masse métallique subissent, au moment de la décharge, une brusque accélération et prennent ensuite un mouvement oscillatoire de haute fréquence. Il en résulte qu’une partie de l’énergie rayonne sous formes d’ondes hertziennes ; 4° Dans un métal incandescent, les électrons enfermés dans ce métal sont animés de grandes vitesses ; en arrivant à la surface du métal, qu’ils ne peuvent franchir, ils se réfléchissent et subissent ainsi une accélération considérable. C’est pour cela que le métal émet de la lumière. C’est ce que j’ai déjà expliqué au chapitre IV. Les détails des lois de l’émission de la lumière par les corps noirs sont parfaitement expliqués par cette hypothèse ; 5° Enfin, quand les rayons cathodiques viennent frapper l’anticathode, les électrons négatifs qui constituent ces rayons, et qui sont animés de très grandes vitesses, sont brusquement arrêtés. Par suite de l’accélération qu’ils subissent ainsi, ils produisent des ondulations dans l’éther. Ce serait là, d’après certains physiciens, l’origine des rayons Röntgen, qui ne seraient autre chose que des rayons lumineux de très courte longueur d’onde. [398]
 
<center>
Ligne 393 :
Considérons un système d’électrons plongés dans un éther parcouru en tous sens par des ondes lumineuses ; un de ces électrons, frappé par l’une de ces ondes, va entrer en vibration ; sa vibration va être synchrone de celle de la lumière ; mais il pourra y avoir une différence déphasé, si l’électron absorbe une partie de l’énergie incidente. Si, en effet, il absorbe de l’énergie, c’est que c’est la vibration de l’éther qui ''entraîne'' l’électron ; l’électron doit donc être en retard sur l’éther. Un électron en mouvement est assimilable à un courant de convection ; donc tout champ magnétique, en particulier celui qui est dû à la perturbation lumineuse elle-même, doit exercer une action mécanique sur cet électron. Cette action est très faible ; de plus, elle change de signe dans le courant de la période ; néanmoins, l’action moyenne n’est pas nulle s’il y a une différence de phase entre les vibrations de l’électron et celles de l’éther. L’action moyenne est proportionnelle à cette différence, par conséquent à l’énergie absorbée par l’électron.
 
Je ne puis entrer ici dans le détail des calculs ; disons seulement que le résultat final est une attraction entre deux électrons quelconques, égale à :
 
<center><math>\frac{EE_{1}}{4\pi E_{1}^{\prime 2}}.</math></center>