Science et méthode/Livre II, § II

Science et méthode (Édition définitive) (1908)
E. Flammarion (p. 129-159).

== 1 ==

Je dois parler ici des définitions générales en mathématiques ; c’est du moins ce que dit le titre du chapitre, mais il me sera impossible de me renfermer dans ce sujet autant que l’exigerait la règle de l’unité d’action ; je ne pourrai le traiter sans parler un peu d’autres questions voisines, et si je suis ainsi obligé de marcher de temps en temps dans les plates-bandes à droite ou à gauche, je vous prie de vouloir bien me le pardonner.

Qu’est-ce qu’une bonne définition ? Pour le philosophe, ou pour le savant, c’est une définition qui s’applique à tous les objets définis et ne s’applique qu’à eux ; c’est celle qui satisfait aux règles de la logique. Mais dans l’enseignement, ce n’est pas cela ; une bonne définition, c’est celle qui est comprise par les élèves.

Comment se fait-il qu’il y a tant d’esprits qui se refusent à comprendre les mathématiques ? N’y a-t-il pas là quelque chose de paradoxal ? Comment, voir une science qui ne fait appel qu’aux principes fondamentaux de la logique, au principe de contradiction, par exemple, à ce qui fait pour ainsi dire le squelette de notre entendement, à ce qu’on ne saurait dépouiller sans cesser de penser, et il y a des gens qui la trouvent obscure ! et même ils sont en majorité ! Qu’ils soient incapables d’inventer, passe encore, mais qu’ils ne comprennent pas les démonstrations qu’on leur expose, qu’ils restent aveugles quand nous leur présentons une lumière qui nous semble briller d’un pur éclat, c’est ce qui est tout à fait prodigieux.

Et pourtant il ne faut pas avoir une grande expérience des examens pour savoir que ces aveugles ne sont nullement des êtres d’exception. Il y a là un problème qu’il n’est pas aisé de résoudre, mais qui doit préoccuper tous ceux qui veulent se vouer à l’enseignement.

Qu’est-ce que comprendre ? Ce mot a-t-il le même sens pour tout le monde ? Comprendre la démonstration d’un théorème, est-ce examiner successivement chacun des syllogismes dont elle se compose et constater qu’il est correct, conforme aux règles du jeu ? De même comprendre une définition, est-ce seulement reconnaître qu’on sait déjà le sens de tous les termes employés et constater qu’elle n’implique aucune contradiction ?

Oui, pour quelques-uns ; quand ils auront fait cette constatation, ils diront : j’ai compris. Non, pour le plus grand nombre. Presque tous sont beaucoup plus exigeants, ils veulent savoir non seulement si tous les syllogismes d’une démonstration sont corrects, mais pourquoi ils s’enchaînent dans tel ordre, plutôt que dans tel autre. Tant qu’ils leur semblent engendrés par le caprice, et non par une intelligence constamment consciente du but à atteindre, ils ne croient pas avoir compris.

Sans doute ils ne se rendent pas bien compte eux-mêmes de ce qu’ils réclament et ils ne sauraient formuler leur désir, mais s’ils n’ont pas satisfaction, ils sentent vaguement que quelque chose leur manque. Alors qu’arrive-t-il ? Au début, ils aperçoivent encore les évidences qu’on met sous leurs yeux ; mais comme elles ne sont liées que par un fil trop ténu à celles qui précédent et à celles qui suivent, elles passent sans laisser de trace dans leur cerveau ; elles sont tout de suite oubliées ; un instant éclairées, elles retombent aussitôt dans une nuit éternelle. Quand ils seront plus avancés, ils ne verront plus même cette lumière éphémère, parce que les théorèmes s’appuient les uns sur les autres et que ceux dont ils auraient besoin sont oubliés ; c’est ainsi qu’ils deviennent incapables de comprendre les mathématiques.

Ce n’est pas toujours la faute de leur professeur ; souvent leur intelligence, qui a besoin d’apercevoir le fil conducteur, est trop paresseuse pour le chercher et pour le trouver. Mais pour leur venir en aide, il faut d’abord que nous comprenions bien ce qui les arrête.

D’autres se demanderont toujours à quoi cela sert ; ils n’auront pas compris s’ils ne trouvent autour d’eux, dans la pratique ou dans la nature, la raison d’être de telle ou telle notion mathématique. Sous chaque mot, ils veulent mettre une image sensible ; il faut que la définition évoque cette image, qu’à chaque stade de la démonstration ils la voient transformer et évoluer. À cette condition seulement, ils comprendront et ils retiendront. Ceux-là souvent se font illusion à eux-mêmes ; ils n’écoutent pas les raisonnements, ils regardent les figures ; ils s’imaginent avoir compris et ils n’ont fait que voir.

2 modifier

Que de tendances diverses ! Faut-il les combattre ? Faut-il nous en servir ? Et si nous voulions les combattre, laquelle faudrait-il favoriser ? Est-ce à ceux qui se contentent de la logique pure qu’il faut montrer qu’ils n’ont vu qu’une face des choses ? Ou bien faut-il dire à ceux qui ne se satisfont pas à si bon marché que ce qu’ils réclament n’est pas nécessaire ?

En d’autres termes, devons-nous contraindre les jeunes gens à changer la nature de leur esprit ? Une pareille tentative serait vaine ; nous ne possédons pas la pierre philosophale qui nous permettrait de transmuter les uns dans les autres les métaux qui nous sont confiés ; tout ce que nous pouvons faire c’est de les travailler en nous accommodant à leurs propriétés.

Bien des enfants sont incapables de devenir mathématiciens, auxquels pourtant il faut enseigner les mathématiques ; et les mathématiciens eux-mêmes ne sont pas tous coulés dans le même moule. Il suffit de lire leurs ouvrages pour distinguer parmi eux deux sortes d’esprits, les logiciens comme Weierstrass, par exemple, les intuitifs comme Riemann. Même différence parmi nos étudiants. Les uns aiment mieux traiter leurs problèmes « par l’analyse » comme ils disent, les autres « par la géométrie ».

Il est bien inutile de chercher à y changer quelque chose, et cela d’ailleurs serait-il désirable ? Il est bon qu’il y ait des logiciens et qu’il y ait des intuitifs ; qui oserait dire s’il aimerait mieux que Weierstrass n’eût jamais écrit, ou qu’il n’y eût pas eu de Riemann. Il faut donc nous résigner à la diversité des esprits, ou mieux, il faut nous en réjouir.


3 modifier

Puisque le mot comprendre a plusieurs sens, les définitions qui seront le mieux comprises des uns ne seront pas celles qui conviendront aux autres. Nous avons celles qui cherchent à faire naître une image, et celles où l’on se borne à combiner des formes vides, parfaitement intelligibles, mais purement intelligibles, que l’abstraction a privées de toute matière.

Je ne sais s’il est bien nécessaire de citer des exemples ? Citons-en pourtant, et d’abord la définition des fractions va nous fournir un exemple extrême. Dans les écoles primaires, pour définir une fraction, on découpe une pomme ou une tarte ; on la découpe par la pensée bien entendu et non en réalité, car je ne suppose pas que le budget de l’enseignement primaire permette une pareille prodigalité. A l’École normale supérieure, au contraire, ou dans les Facultés, on dira : une fraction, c’est l’ensemble de deux nombres entiers séparés par un trait horizontal ; on définira par des conventions les opérations que peuvent subir ces symboles ; on démontrera que les règles de ces opérations sont les mêmes que dans le calcul des nombres entiers, et on constatera enfin qu’en faisant, d’après ces règles, la multiplication de la fraction par le dénominateur, on retrouve le numérateur. C’est très bien parce qu’on s’adresse à des jeunes gens, depuis longtemps familiarisés avec la notion des fractions à force d’avoir partagé des pommes ou d’autres objets, et dont l’esprit, affiné par une forte éducation mathématique, en est arrivé peu à peu à désirer une définition purement logique. Mais quel serait l’ahurissement d’un débutant à qui on voudrait la servir ?

Telles sont aussi les définitions que vous trouvez dans un livre justement admiré et bien des fois couronné, les « Grundlagen der Geometrie » de Hilbert. Voyons on effet comment il débute : Pensons trois systèmes de CHOSES que nous appellerons points, droites et plans. Que sont ces « choses » ? nous ne le savons pas, et nous n’avons pas à le savoir ; il serait même fâcheux que nous cherchions à le savoir ; tout ce que nous avons le droit d’on savoir, c’est ce que nous en apprennent les axiomes, celui-ci par exemple : Deux points différents déterminent toujours une droite, qui est suivi de ce commentaire : au lieu de déterminent, nous pouvons dire que la droite passe par ces deux points, ou qu’elle joint ces deux points, ou que ces deux points sont situés sur la droite. Ainsi, « être situé sur une droite » est simplement défini comme synonyme de « déterminer une droite ». Voilà un livre dont je pense beaucoup de bien, mais que je ne recommanderais pas à un lycéen. Au reste, je pourrais le faire sans crainte, il ne pousserait pas la lecture bien loin.

J’ai pris des exemples extrêmes et aucun maître ne pourrait songer à aller aussi loin. Mais, même en restant bien en deçà de pareils modèles, ne s’expose-t-il pas déjà au même danger ?

Nous sommes dans une classe de h le professeur dicte : le cercle est le lieu des points du plan qui sont à la même distance d’un point intérieur appelé centre. Le bon élève écrit cette phrase sur son cahier ; le mauvais élève y dessine des bonshommes ; mais ni l’un ni l’autre n’ont compris ; alors le professeur prend la craie et trace un cercle sur le tableau. « Ah ! pensent les élèves, que ne disait-il tout de suite : un cercle c’est un rond, nous aurions compris. » Sans doute, c’est le professeur qui a raison. La définition des élèves n’aurait rien valu, puisqu’elle n’aurait pu servir à aucune démonstration, et surtout puisqu’elle n’aurait pu leur donner la salutaire habitude d’analyser leurs conceptions. Mais il faudrait leur montrer qu’ils ne comprennent pas ce qu’ils croient comprendre, les amener à se rendre compte de la grossièreté de leur concept primitif, à désirer d’eux-mêmes qu’on l’épure et le dégrossisse.

4 modifier

Je reviendrai sur tous ces exemples ; j’ai voulu seulement vous montrer les deux conceptions opposées ; il y a entre elles un violent contraste. Ce contraste, l’histoire de la science nous l’explique. Si nous lisons un livre écrit il y a cinquante ans, la plupart des raisonnements que nous y trouverons nous sembleront dépourvus de rigueur.

On admettait à cette époque qu’une fonction continue ne peut changer de signe sans s’annuler ; on le démontre aujourd’hui. On admettait que les règles ordinaires du calcul sont applicables que nombres incommensurables, on le démontre aujourd’hui. On admettait bien d’autres choses qui quelquefois étaient fausses.

On se fiait à l’intuition ; mais l’intuition ne peut nous donner la rigueur, ni même la certitude, on s’en est aperçu de plus en plus. Elle nous apprend par exemple que toute courbe a une tangente, c’est-à-dire que toute fonction continue a une dérivée, et cela est faux. Et comme on tenait à la certitude, il a fallu faire de plus en plus petite la part de l’intuition.

Comment s’est faite cette évolution nécessaire ? On n’a pas tardé à s’apercevoir que la rigueur ne pourrait pas s’établir dans les raisonnements, si on ne la faisait entrer d’abord dans les définitions.

Longtemps les objets dont s'occupent les mathématiciens étaient mal définis ; on croyait les connaître parce qu’on se les représentait avec les sens ou l’imagination, mais on n’en avait qu’une image grossière et non une idée précise sur laquelle le raisonnement pût avoir prise.

C’est là, que les logiciens ont dû porter leurs efforts. Ainsi pour le nombre incommensurable.

L’idée vague de continuité, que nous devions à l’intuition, s’est résolue en un système compliqué d’inégalités portant sur des nombres entiers. C’est ainsi que se sont définitivement évanouies toutes ces difficultés qui effrayaient nos pères, quand ils réfléchissaient aux fondements du calcul infinitésimal.

Il ne reste plus aujourd’hui en analyse que des nombres entiers, ou des systèmes finis ou infinis de nombres entiers, reliés par un réseau d’égalités et d’inégalités.

Les mathématiques, comme on l’a dit, se sont arithmétisées.

5 modifier

Mais croit-on que les mathématiques aient atteint la rigueur absolue sans faire de sacrifice ? Pas du tout, ce qu’elles ont gagné en rigueur, elles l’ont perdu en objectivité. C’est en s’éloignant de la réalité qu’elles ont acquis cette pureté parfaite. On peut parcourir librement tout leur domaine, autrefois hérissé d’obstacles, mais ces obstacles n’ont pas disparu. Ils ont seulement été transports à la frontière et il faudra les vaincre de nouveau si l’on veut franchir cette frontière pour pénétrer dans le royaume de la pratique.

On possédait une notion vague, formée d’éléments disparates, les uns a priori, les autres provenant d’expériences plus ou moins digérées ; on croyait en connaître, par l’intuition, les principales propriétés. Aujourd’hui on rejette les éléments empiriques en ne conservant que les éléments a priori ; c’est l’une des propriétés qui sert de définition et toutes les autres s’en déduisent parmi raisonnement rigoureux. C’est très bien, mais il reste à prouver que cette propriété, qui est devenue une définition, appartient bien aux objets réels que l’expérience nous avait fait connaître et d’où nous avions tiré notre vague notion intuitive. Pour le prouver, il faudra bien en appeler à l’expérience, ou faire un effort d’intuition, et si nous ne pouvions le prouver, nos théorèmes seraient parfaitement rigoureux, mais parfaitement inutiles.

La logique parfois engendre des monstres. Depuis un demi-siècle on a vu surgir une foule de fonctions bizarres qui semblent s’efforcer de ressembler aussi peu que possible aux honnêtes fonctions qui servent à quelque chose. Plus de continuité, ou bien de la continuité, mais pas de dérivées, etc. Bien plus, au point de vue logique, ce sont ces fonctions étranges qui sont les plus générales, celles qu’on rencontre sans les avoir cherchées n’apparaissent plus que comme un cas particulier. Il ne leur reste qu’un tout petit coin.

Autrefois, quand on inventait une fonction nouvelle, c’était en vue de quelque but pratique ; aujourd’hui, on les invente tout exprès pour mettre en défaut les raisonnements de nos pères, et on n’en tirera jamais que cela.

Si la logique était le seul guide du pédagogue, ce serait par les fonctions les plus générales, c’est-à-dire par les plus bizarres, qu’il faudrait commencer. C’est le débutant qu’il faudrait mettre aux prises avec ce musée tératologique. Si vous ne le faites pas, pourraient dire les logiciens, vous n’atteindrez la rigueur que par étapes.

6 modifier

Oui, peut-être, mais nous ne pouvons faire aussi bon marché de la réalité, et je n’entends pas seulement la réalité du monde sensible, qui a pourtant son prix, puisque c’est pour lutter contre elle que les neuf dixièmes de vos élèves vous demandent des armes. Il y a une réalité plus subtile, qui fait la vie des êtres mathématiques, et qui est autre chose que la logique.

Notre corps est formé de cellules et les cellules d’atomes ; ces cellules et ces atomes sont-ils donc toute la réalité du corps humain ? La façon dont ces cellules sont agencées, et dont résulte l’unité de l’individu, n’est-elle pas aussi une réalité et beaucoup plus intéressante ?

Un naturaliste qui n’aurait jamais étudié l’éléphant qu’au microscope croirait-il connaître suffisamment cet animal ?

Il en est de même en mathématiques. Quand le logicien aura décomposé chaque démonstration en une foule d’opérations élémentaires, toutes correctes, il ne possédera pas encore la réalité tout entière ; ce je ne sais quoi qui fait l’unité de la démonstration lui échappera complètement.

Dans les édifices élevés par nos maîtres, à quoi bon admirer l’œuvre du maçon si nous ne pouvons comprendre le plan de l’architecte ? Or, cette vue d’ensemble, la logique pure ne peut nous la donner, c’est à l’intuition qu’il faut la demander.

Prenons par exemple l’idée de fonction continue. Ce n’est d’abord qu’une image sensible, un trait tracé à la craie sur le tableau noir. Peu à peu elle s’épure ; on s’en sert pour construire un système compliqué d’inégalités, qui reproduit toutes les lignes de l’image primitive ; quand tout a été terminé, on a décintré, comme après la construction d’une voûte ; cette représentation grossière, appui désormais inutile, a disparu et il n’est resté que l’édifice lui-même, irréprochable aux yeux du logicien. Et pourtant, si le professeur ne rappelait l’image primitive, s’il ne rétablissait momentanément le cintre, comment l’élève devinerait-il par quel caprice toutes ces inégalités se sont échafaudées de cette façon les unes sur les autres ? La définition serait logiquement correcte, mais elle ne lui montrerait pas la réalité véritable.


7 modifier

Nous voilà donc obligés de revenir en arrière ; sans doute il est dur pour un maître d’enseigner ce qui ne le satisfait pas entièrement ; mais la satisfaction du maître n’est pas l’unique objet de l’enseignement ; on doit d’abord se préoccuper de ce qu’est l’esprit de l’élève et de ce qu’on veut qu’il devienne.

Les zoologistes prétendent que le développement embryonnaire d’un animal résume en un temps très court toute l’histoire de ses ancêtres des temps géologiques. Il semble qu’il en est de même du développement des esprits. L’éducateur doit faire repasser l’enfant par où ont passé ses pères ; plus rapidement mais sans brûler d’étape. À ce compte, l’histoire de la science doit être notre premier guide.

Nos pères croyaient savoir ce que c’est qu’une fraction, ou que la continuité, ou que l’aire d’une surface courbe ; c’est nous qui nous sommes aperçus qu’ils ne le savaient pas. De même nos élèves croient le savoir quand ils commencent à étudier sérieusement les mathématiques. Si, sans autre préparation, je viens leur dire : « Non, vous ne le savez pas ; ce que vous croyez comprendre, vous ne le comprenez pas ; il faut que je vous démontre ce qui vous semble évident », et si dans la démonstration je m’appuie sur des prémisses qui leur semblent moins évidentes que la conclusion, que penseront ces malheureux ? Ils penseront que la science mathématique n’est qu’un entassement arbitraire de subtilités inutiles ; ou bien ils s’en dégoûteront ; ou bien ils s’en amuseront comme d’un jeu et ils arriveront à un état d’esprit analogue à celui des sophistes grecs.

Plus tard, au contraire, quand l’esprit de l’élève, familiarisé avec le raisonnement mathématique, se sera mûri par cette longue fréquentation, les doutes naîtront d’eux-mêmes et alors votre démonstration sera la bienvenue. Elle en éveillera de nouveaux, et les questions se poseront successivement à l’enfant, comme elles se sont posées successivement à nos pères, jusqu’à ce que la rigueur parfaite puisse seule le satisfaire. Il ne suffit pas de douter de tout, il faut savoir pourquoi l’on doute.


8 modifier

Le but principal de l’enseignement mathématique est de développer certaines facultés de l’esprit et parmi elles l’intuition n’est pas la moins précieuse. C’est par elle que le monde mathématique reste en contact avec le monde réel et quand les mathématiques pures pourraient s’en passer, il faudrait toujours y avoir recours pour combler l’abîme qui sépare le symbole de la réalité. Le praticien en aura toujours besoin et pour un géomètre pur il doit y avoir cent praticiens.

L’ingénieur doit recevoir une éducation mathématique complète, mais à quoi doit-elle lui servir ? à voir les divers aspects des choses et à les voir vite ; il n’a pas le temps de chercher la petite bête. Il faut que, dans les objets physiques complexes qui s’offrent à lui, il reconnaisse promptement le point où pourront avoir prise les outils mathématiques que nous lui avons mis en main. Comment le ferait-il si nous laissions entre les uns et les autres cet abîme profond creusé par les logiciens ?

9 modifier

À côté des futurs ingénieurs, d’autres élèves, moins nombreux, doivent à leur tour devenir des maîtres ; il faut donc qu’ils aillent jusqu’au fond ; une connaissance approfondie et rigoureuse des premiers principes leur est avant tout indispensable. Mais ce n’est pas une raison pour ne pas cultiver chez eux l’intuition ; car ils se feraient une idée fausse de la science s’ils ne la regardaient jamais que d’un seul côté et d’ailleurs ils ne pourraient développer chez leurs élèves une qualité qu’ils ne posséderaient pas eux-mêmes.

Pour le géomètre pur lui-même, cette faculté est nécessaire, c’est par la logique qu’on démontre, c’est par l’intuition qu’on invente. Savoir critiquer est bon, savoir créer est mieux. Vous savez reconnaître si une combinaison est correcte ; la belle affaire si vous ne possédez pas l’art de choisir entre toutes les combinaisons possibles. La logique nous apprend que sur tel ou tel chemin nous sommes sûrs de ne pas rencontrer d’obstacle ; elle ne nous dit pas quel est celui qui mène au but. Pour cela il faut voir le but de loin, et la faculté qui nous apprend à voir, c’est l’intuition. Sans elle, le géomètre serait comme un écrivain qui serait ferré sur la grammaire, mais qui n’aurait pas d’idées. Or, comment cette faculté se développerait-elle, si dès qu’elle se montre on la pourchasse et on la proscrit, si on apprend à s’en défier avant de savoir ce qu’on en peut tirer de bon.

Et là, permettez-moi d’ouvrir une parenthèse pour insister sur l’importance des devoirs écrits. Les compositions écrites n’ont peut-être pas assez de place dans certains examens, à l’École polytechnique, par exemple. On me dit qu’elles fermeraient la porte à de très bons élèves qui savent très bien leur cours, qui le comprennent très bien, et qui pourtant sont incapables d’en faire la moindre application. J’ai dit tout à l’heure que le mot comprendre a plusieurs sens : ceux-là ne comprennent que de la première manière, et nous venons de voir que cela ne suffit ni pour faire un ingénieur, ni pour faire un géomètre. Eh bien, puisqu’il faut faire un choix, j’aime mieux choisir ceux qui comprennent tout à fait.


10 modifier

Mais l’art de raisonner juste n’est-il pas aussi une qualité précieuse, que le professeur de mathématiques doit avant tout cultiver ? Je n’ai garde de l’oublier ; on doit s’en préoccuper et dès le début. Je serais désolé de voir la géométrie dégénérer en je ne sais quelle tachymétrie de bas étage et je ne souscris nullement aux doctrines extrêmes de certains Oberlehrer allemands. Mais on a assez d’occasions d’exercer les élèves au raisonnement correct, dans les parties des mathématiques où les inconvénients que j’ai signalés ne se présentent pas. On a de longs enchaînements de théorèmes où la logique absolue a régné du premier coup et pour ainsi dire tout naturellement, où les premiers géomètres nous ont donné des modèles qu’il faudra constamment imiter et admirer.

C’est dans l’exposition des premiers principes qu’il faut éviter trop de subtilité ; là elle serait plus rebutante et d’ailleurs inutile. On ne peut tout démontrer et on ne peut tout définir ; et il faudra toujours emprunter à l’intuition ; qu’importe de le faire un peu plus tôt ou un peu plus tard, ou même de lui demander un peu plus ou un peu moins, pourvu qu’en se servant correctement des prémisses qu’elle nous a fournies, nous apprenions à raisonner juste.


11 modifier

Est-il possible de remplir tant de conditions opposées ? Est-ce possible en particulier quand il s’agit de donner une définition ? Comment trouver un énoncé concis qui satisfasse à la fois aux règles intransigeantes de la logique, à notre désir de comprendre la place de la notion nouvelle dans l’ensemble de la science, à notre besoin de penser avec des images ? Le plus souvent on ne le trouvera pas, et c’est pourquoi il ne suffit pas d’énoncer une définition ; il faut la préparer et il faut la justifier.

Que veux-je dire par là ? Vous savez ce qu’on a dit souvent : toute définition implique un axiome, puisqu’elle affirme l’existence de l’objet défini. La définition ne sera donc justifiée, au point de vue purement logique, que quand on aura démontré qu’elle n’entraîne pas de contradiction, ni dans les termes, ni avec les vérités antérieurement admises.

Mais ce n’est pas assez ; la définition nous est énoncée comme une convention ; mais la plupart des esprits se révolteront si vous voulez la leur imposer comme convention arbitraire. Ils n’auront de repos que quand vous aurez répondu à de nombreuses questions.

Le plus souvent les définitions mathématiques, comme l’a montré M. Liard, sont de véritables constructions édifiées de toutes pièces avec des notions plus simples. Mais pourquoi avoir assemblé ces éléments de cette façon quand mille autres assemblages étaient possibles ? Est-ce par caprice ? Sinon, pourquoi cette combinaison avait-elle plus de droits à l’existence que toutes les autres ? À quel besoin répondait-elle ? Comment a-t-on prévu qu’elle jouerait dans le développement de la science un rôle important, qu’elle abrégerait nos raisonnements et nos calculs ? Y a-t-il dans la nature quelque objet familier, qui en est pour ainsi dire l’image indécise et grossière ?

Ce n’est pas tout ; si vous répondez à toutes ces questions d’une manière satisfaisante, nous verrons bien que le nouveau-né avait le droit d’être baptisé ; mais le choix du nom n’est pas non plus arbitraire : il faut expliquer par quelles analogies on a été guidé et que si l’on a donné des noms analogues à des choses différentes, ces choses du moins ne diffèrent que par la matière et se rapprochent par la forme ; que leurs propriétés sont analogues et pour ainsi dire parallèles.

C’est à ce prix qu’on pourra satisfaire toutes les tendances. Si l’énoncé est assez correct pour plaire au logicien, la justification contentera l’intuitif. Mais il y a mieux à faire encore ; toutes les fois que cela sera possible, la justification précédera l’énoncé et le préparera ; on sera conduit à l’énoncé général par l’étude de quelques exemples particuliers.

Autre chose encore : chacune des parties de l’énoncé d’une définition a pour but de distinguer l’objet à définir d’une classe d’autres objets voisins. La définition ne sera comprise que quand vous aurez montré, non seulement l’objet défini, mais les objets voisins dont il convient de le distinguer, que vous aurez fait saisir la différence et que vous aurez ajouté explicitement : c’est pour cela qu’en énonçant la définition j’ai dit ceci ou cela.

Mais il est temps de sortir des généralités et d’examiner comment les principes un peu abstraits que je viens d’exposer peuvent être appliqués en arithmétique, en géométrie, en analyse et en mécanique.

12 modifier

Arithmétique. modifier

On n’a pas à définir le nombre entier ; en revanche, on définit d’ordinaire les opérations sur les nombres entiers ; je crois que les élèves apprennent ces définitions par cœur et qu’ils n’y attachent aucun sens. Il y a à cela deux raisons : d’abord on les leur fait apprendre trop tôt, quand leur esprit n’en éprouve encore aucun besoin ; puis ces définitions ne sont pas satisfaisantes au point de vue logique. Pour l’addition on ne saurait en trouver une bonne, tout simplement parce qu’il faut s’arrêter et qu’on ne saurait tout définir. Ce n’est pas définir l’addition que de dire qu’elle consiste à ajouter. Tout ce qu’on peut faire c’est de partir d’un certain nombre d’exemples concrets et de dire : l’opération que nous venons de faire s’appelle addition.

Pour la soustraction, c’est autre chose ; on peut la définir logiquement comme l’opération inverse de l’addition ; mais est-ce par là qu’il faut commencer ? Là aussi il faut débuter par des exemples, montrer sur ces exemples la réciprocité des deux opérations ; la définition sera ainsi préparée et justifiée.

De même encore pour la multiplication ; on prendra un problème particulier ; on montrera qu’on peut le résoudre en additionnant plusieurs nombres égaux entre eux ; on fera voir ensuite qu’on arrive plus vite au résultat par une multiplication, l’opération que les élèves savent déjà faire par routine et la définition logique sortira de là tout naturellement.

On définira la division comme l’opération inverse de la multiplication ; mais on commencera par un exemple emprunté à la notion familière de partage et on montrera sur cet exemple que la multiplication reproduit le dividende.

Restent les opérations sur les fractions. Il n’y a de difficulté que pour la multiplication. Le mieux est d’exposer d’abord la théorie des proportions, c’est d’elle seulement que pourra sortir une définition logique ; mais pour faire accepter les définitions que l’on rencontre au début de cette théorie, il faut les préparer par de nombreux exemples, empruntés à des problèmes classiques de règles de trois, où l’on aura soin d’introduire des données fractionnaires. On ne craindra pas non plus de familiariser les élèves avec la notion de proportion par des images géométriques, soit en faisant appel à leurs souvenirs s’ils ont déjà fait de la géométrie, soit en ayant recours à l’intuition directe, s’ils n’en ont pas fait, ce qui les préparera d’ailleurs à en faire. J’ajouterai, enfin, qu’après avoir défini la multiplication des fractions, il faut justifier cette définition, en démontrant qu’elle est commutative, associative et distributive, et en faisant bien remarquer aux auditeurs qu’on fait cette constatation pour justifier la définition.

On voit quel rôle jouent dans tout ceci les images géométriques ; et ce rôle est justifié par la philosophie et l’histoire de la science. Si l’arithmétique était restée pure de tout mélange avec la géométrie, elle n’aurait connu que le nombre entier ; c’est pour s’adapter aux besoins de la géométrie qu’elle a inventé autre chose.

=== Géométrie. ===

En géométrie nous rencontrons d’abord la notion de ligne droite. Peut-on définir la ligne droite ? La définition connue, le plus court chemin d’un point à un autre, ne me satisfait guère. Je partirais tout simplement de la règle et je montrerais d’abord à l’élève comment on peut vérifier une règle par retournement ; cette vérification est la vraie définition de la ligne droite ; la ligne droite est un axe de rotation. On lui montrerait ensuite à vérifier la règle par glissement et on aurait une des propriétés les plus importantes de la ligne droite. Quant à cette autre propriété d’être le plus court chemin d’un point à un autre, c’est un théorème qui peut être démontré apodictiquement, mais la démonstration est trop délicate pour pouvoir trouver place dans l’enseignement secondaire. Il vaudra mieux montrer qu’une règle préalablement vérifiée s’applique sur un fil tendu. Il ne faut pas redouter, en présence de difficultés analogues, de multiplier les axiomes, en les justifiant par des expériences grossières.

Ces axiomes, il faut bien en admettre, et si l’on en admet un peu plus qu’il n’est strictement nécessaire, le mal n’est pas bien grand ; l’essentiel est d’apprendre à raisonner juste sur les axiomes une fois admis. L’oncle Sarcey qui aimait à se répéter disait souvent qu’au théâtre le spectateur accepte volontiers tous les postulats qu’on lui impose au début, mais qu’une fois le rideau levé, il devient intransigeant sur la logique. Eh bien, c’est la même chose en mathématiques.

Pour le cercle, on peut partir du compas ; les élèves reconnaîtront du premier coup la courbe tracée ; on leur fera observer ensuite que la distance des deux pointes de l’instrument reste constante, que l’une de ces pointes est fixe et l’autre mobile, et on sera ainsi amené naturellement à la définition logique.

La définition du plan implique un axiome et il ne faut pas le dissimuler. Qu’on prenne une planche à dessin et que l’on fasse remarquer qu’une règle mobile s’applique constamment sur cette planche et cela en conservant trois degrés de liberté. On comparerait avec le cylindre et le cône, surfaces sur lesquelles on ne saurait appliquer une droite à moins de ne lui laisser que deux degrés de liberté ; puis, on prendrait trois planches à dessin ; on montrerait d’abord qu’elles peuvent glisser en restant appliquées l’une sur l’autre et cela avec 3 degrés de liberté ; et enfin pour distinguer le plan de la sphère, que deux de ces planches, applicables sur une troisième, sont applicables l’une sur l’autre.

Peut-être vous étonnerez-vous de cet incessant emploi d’instruments mobiles ; ce n’est pas là un grossier artifice, et c’est beaucoup plus philosophique qu’on ne le croit d’abord. Qu’est-ce que la géométrie pour le philosophe ? C’est l’étude d’un groupe, et quel groupe ? de celui des mouvements des corps solides. Comment alors définir ce groupe sans faire mouvoir quelques corps solides ?

Devons-nous conserver la définition classique des parallèles et dire qu’on appelle ainsi deux droites qui, situées dans le même plan, ne se rencontrent pas quelque loin qu’on les prolonge ? Non parce que cette définition est négative, parce qu’elle est invérifiable par l’expérience et ne saurait en conséquence être regardée comme une donnée immédiate de l’intuition. Non, surtout, parce qu’elle est totalement étrangère à la notion de groupe, à la considération du mouvement des corps solides qui est, comme je l’ai dit, la véritable source de la géométrie. Ne vaudrait-il pas mieux définir d’abord la translation rectiligne d’une figure invariable, comme un mouvement où tous les points de cette figure ont des trajectoires rectilignes ; montrer qu’une semblable translation est possible, en faisant glisser une équerre sur une règle ? De cette constatation expérimentale, érigée en axiome, il serait aisé de faire sortir la notion de parallèle et le postulatum d’Euclide lui-même.

=== Mécanique ===

Je n’ai pas à revenir sur la définition de la vitesse, ou de l’accélération, ou des autres notions cinématiques ; on les rattachera avec avantage à celle de la dérivée.

J’insisterai, au contraire, sur les notions dynamiques de force et de masse.

Il y a une chose qui me frappe : c’est combien les jeunes gens qui ont reçu l’éducation secondaire sont éloignés d’appliquer au monde réel les lois mécaniques qu’on leur a enseignées. Ce n’est pas seulement qu’ils en soient incapables ; ils n’y pensent même pas. Pour eux le monde de la science et celui de la réalité sont séparés par une cloison étanche. Il n’est pas rare de voir un monsieur bien mis, probablement bachelier, assis dans une voiture et s’imaginant qu’il l’aide à avancer en poussant sur l’avant, et cela au mépris du principe de l’action et de la réaction.

Si nous essayons d’analyser l’état d’âme de nos élèves, cela nous étonnera moins ; quelle est pour eux la véritable définition de la force ? non pas celle qu’ils récitent, mais celle qui, tapie dans un recoin de leur entendement, le dirige de là tout entier. Cette définition, la voici : les forces sont des flèches avec lesquelles on fait des parallélogrammes. Ces flèches sont des êtres imaginaires qui n’ont rien à faire avec rien de ce qui existe dans la nature. Cela n’arriverait pas, si on leur avait montré des forces dans la réalité avant de les représenter par des flèches.

Comment définir la force ? Une définition logique, il n’y en a pas de bonne, je crois l’avoir suffisamment montré ailleurs. Il y a la définition anthropomorphique, la sensation de l’effort musculaire ; celle-là est vraiment trop grossière et on n’en peut rien tirer d’utile.

Voici la marche qu’il faudra suivre : il faut d’abord, pour faire connaître le genre force, montrer l’une après l’autre toutes les espèces de ce genre ; elles sont bien nombreuses et elles sont bien diverses ; il y a la pression des fluides sur les parois des vases où ils sont enfermés ; la tension des fils ; l’élasticité d’un ressort ; la pesanteur qui agit sur toutes les molécules d’un corps ; les frottements ; l’action et la réaction mutuelle normale de deux solides au contact.

Ce n’est là qu’une définition qualitative ; il faut apprendre à mesurer la force. Pour cela on montrera d’abord que l’on peut remplacer une force par une autre sans troubler l’équilibre ; nous trouverons le premier exemple de cette substitution dans la balance et la double pesée de Borda. Nous montrerons ensuite qu’on peut remplacer un poids, non seulement par un autre poids, mais par des forces de nature différente : par exemple le frein de Prony nous permet de remplacer un poids par un frottement.

De tout cela sort la notion de l’équivalence de deux forces.

Il faut définir la direction d’une force. Si une force F est équivalente à une autre force F’ qui est appliquée au corps considéré par l’intermédiaire d’un fil tendu, de telle sorte que F puisse être remplacée par F’ sans que l’équilibre soit troublé, alors le point d’attache du fil sera par définition le point d’application de la force F’, et celui de la force équivalente F ; la direction du fil sera la direction de la force F’ et celle de la force équivalente F.

De là, on passera à la comparaison de la grandeur des forces. Si une force peut en remplacer deux autres de même direction, c’est qu’elle est égale à leur somme, on montrera par exemple qu’un poids de 20 grammes peut remplacer deux poids de 10 grammes.

Est-ce suffisant ? Pas encore. Nous savons maintenant comparer l’intensité de deux forces qui ont même direction et même point d’application ; il faut apprendre à le faire quand les directions sont différentes. Pour cela, imaginons un fil tendu par un poids et passant sur une poulie ; nous dirons que la tension des deux brins du fil est la même et égale au poids tenseur.

Voilà notre définition, elle nous permet de comparer les tensions de nos deux brins, et, en se servant des définitions précédentes, de comparer deux forces quelconques ayant même direction que ces deux brins. Il faut le justifier en montrant que la tension du dernier brin reste la même pour un même poids tenseur, quels que soient le nombre et la disposition des poulies de renvoi. Il faut la compléter ensuite en montrant que cela n’est vrai que si les poulies sont sans frottement.

Une fois maître de ces définitions, il faut faire voir que le point d’application, la direction et l’intensité suffisent pour déterminer une force ; que deux forces pour lesquelles ces trois éléments sont les mêmes sont toujours équivalentes et peuvent toujours être remplacées l’une par l’autre, soit dans l’équilibre, soit dans le mouvement, et cela quelles que soient les autres forces mises en jeu.

Il faut faire voir que deux forces concourantes peuvent toujours être remplacées par une résultante unique ; et que cette résultante reste la même, que le corps soit en repos ou en mouvement et quelles que soient les autres forces qui lui sont appliquées.

Il faut faire voir enfin que les forces définies comme nous venons de le faire satisfont au principe de l’égalité de l’action et de la réaction.

Tout cela, c’est l’expérience, et l’expérience seule qui peut nous l’apprendre.

Il suffira de citer quelques expériences vulgaires, que les élèves font tous les jours sans s’en douter, et d’exécuter devant eux un petit nombre d’expériences simples et bien choisies.

C’est quand on aura passé par tous ces détours qu’on pourra représenter les forces par des flèches, et même je voudrais que, dans le développement des raisonnements, l’on revint de temps en temps du symbole à la réalité. Il ne serait pas difficile par exemple d’illustrer le parallélogramme des forces à l’aide d’un appareil formé de trois fils, passant sur des poulies, tendus par des poids et se faisant équilibre en tirant sur un même point.

Connaissant la force, il est aisé de définir la masse ; cette fois la définition doit être empruntée à la dynamique ; il n’y a pas moyen de faire autrement, puisque le but à atteindre, c’est de faire comprendre la distinction entre la masse et le poids. Ici encore, la définition doit être préparée par des expériences ; il y a en effet une machine qui semble faite tout exprès pour montrer ce que c’est que la masse, c’est la machine d’Atwood ; on rappellera d’ailleurs les lois de la chute des corps, que l’accélération de la pesanteur est la même pour les corps lourds et pour les corps légers, et qu’elle varie avec la latitude, etc.

Maintenant, si vous me dites que toutes les méthodes que je préconise sont depuis longtemps appliquées dans les lycées, je m’en réjouirai plus que je ne m’en étonnerai ; je sais que dans son ensemble notre enseignement mathématique est bon ; je ne désire pas qu’il soit bouleversé, j’en serais même désolé, je ne désire que des améliorations lentement progressives. Il ne faut pas que cet enseignement subisse de brusques oscillations au souffle capricieux de modes éphémères. Dans de pareilles tempêtes sombrerait bientôt sa haute valeur éducative. Une bonne et solide logique doit continuer à en faire le fond. La définition par l’exemple est toujours nécessaire, mais elle doit préparer la définition logique, elle ne doit pas la remplacer ; elle doit tout au moins la faire désirer, dans les cas où la véritable définition logique ne peut être donnée utilement que dans l’enseignement supérieur.

Vous avez bien compris que ce que j’ai dit aujourd’hui n’implique nullement l’abandon de ce que j’ai écrit ailleurs. J’ai eu souvent l’occasion de critiquer certaines définitions que je préconise aujourd’hui. Ces critiques subsistent tout entières. Ces définitions ne peuvent être que provisoires. Mais c’est par elles qu’il faut passer.