Page:Descartes - Œuvres, éd. Adam et Tannery, VI.djvu/476

Cette page n’a pas encore été corrigée
434
380-381.
Œuvres de Descartes.

ponde à celle qu’on imagine. Comme encore qu’on en puisse imaginer trois en celle-ci,

x3 - 6x2 + 13x - 10 = 0,

il n’y en a toutefois qu’une réelle, qui est 2, et pour les deux autres, quoi qu’on les augmente, ou diminue, ou multiplie en la façon que je viens d’expliquer, on ne saurait les rendre autres qu’imaginaires.


La réduction des équations cubiques lorsque le problème est plan.

Or quand pour trouver la construction de quelque problème, on vient à une Équation, en laquelle la quantité inconnue a trois dimensions ; premièrement si les quantités connues, qui y sont, contiennent quelques nombres rompus, il les faut réduire à d’autres entiers, par la multiplication tantôt expliquée ; et s’ils en contiennent de sourds, il faut aussi les réduire à d’autres rationaux, autant qu’il sera possible, tant par cette même multiplication, que par divers autres moyens, qui sont assez faciles à trouver. Puis examinant par ordre toutes les quantités, qui peuvent diviser sans fraction le dernier terme, il faut voir, si quelqu’une d’elles, jointe avec la quantité inconnue par le signe + ou -, peut composer un binôme, qui divise toute la somme ; et si cela est le Problème est plan, c’est-à-dire il peut être construit avec la règle et de compas ; car ou bien la quantité connue de ce binôme est la racine cherchée ; ou bien l’équation étant divisée par lui, se réduit à deux dimensions, en sorte qu’on en peut trouver après la racine, par ce qui a été dit au premier livre.

Par exemple, si on a

y6 – 8y4 – 124y2 – 64 = 0,