Leçons sur l’intégration et la recherche des fonctions primitives (seconde édition)/Chapitre VII



CHAPITRE VII.

L’INTÉGRALE DÉFINIE DES FONCTIONS SOMMABLES.



I. — Le problème d’intégration.

Les applications classiques de l’intégration des fonctions continues, les applications faites précédemment de l’intégration au sens de Riemann ou au sens de Duhamel et Serret, suffisent pour mettre en évidence le rôle de certaines propriétés simples, conséquences de toutes les définitions de l’intégrale déjà étudiées, et pour convaincre que ces propriétés doivent nécessairement appartenir à l’intégrale, si l’on veut qu’il y ait quelque analogie entre cette intégrale et l’intégrale des fonctions continues.

C’est pourquoi nous nous proposons d’attacher à toute fonction bornée[1] , définie dans un intervalle fini , positif, négatif ou nul, un nombre fini, , que nous appelons l’intégrale de dans et qui satisfait aux conditions suivantes :

1. Quels que soient , , , on a

 ;

2. Quels que soient , , , on a

 ;

3.

 ;

4. Si l’on a et , on a aussi

 ;

5. On a

 ;

6. Si, quand l’indice croit, tend en croissant vers , l’intégrale de tend vers celle de .

La signification, la nécessité et les conséquences des cinq premières conditions de ce problème d’intégration sont à peu près évidentes ; nous ne nous y étendrons pas.

La condition 6 a une place à part. Elle n’a ni le même caractère de simplicité que les cinq premières, ni le même caractère de nécessité[2]. De plus, tandis qu’il est facile de construire des nombres satisfaisant à quatre quelconques des cinq premières conditions, sans satisfaire à toutes les cinq, ce qui montre que ces cinq conditions sont indépendantes, on ne sait pas si les six conditions du problème d’intégration sont indépendantes ou non[3].

En énonçant les six conditions du problème d’intégration, nous définissons l’intégrale. Cette définition appartient à la classe de celles que l’on peut appeler descriptives ; dans ces définitions, on énonce des propriétés caractéristiques de l’être que l’on veut définir. Dans les définitions constructives, on énonce quelles opérations il faut faire pour obtenir l’être que l’on veut définir. Ce sont les définitions constructives qui sont le plus souvent employées en Analyse ; cependant on se sert parfois de définitions descriptives[4] ; la définition de l’intégrale, d’après Riemann, est constructive, la définition des fonctions primitives est descriptive.

Lorsque l’on a énoncé une définition constructive, il faut démontrer que les opérations indiquées dans cette définition sont possibles ; une définition descriptive est aussi assujettie à certaines conditions : il faut que les conditions énoncées soient compatibles[5]. Le procédé jusqu’ici toujours employé pour démontrer que des conditions sont compatibles est le suivant : on choisit dans une classe d’êtres antérieurement définis des êtres jouissant de toutes les propriétés énoncées. Cette classe d’êtres est généralement la classe des nombres entiers[6] ; on admet que la définition descriptive de ces nombres ne contient pas de contradiction.

Il faut aussi étudier la nature de l’indétermination des êtres que l’on vient de définir. Supposons, par exemple, que l’on ait démontré l’impossibilité de l’existence de deux classes différentes d’êtres satisfaisant aux conditions indiquées, et que, de plus, on ait démontré la compatibilité de ces conditions en choisissant une classe d’êtres y satisfaisant ; cette classe d’êtres sera la seule définie, de sorte que la définition constructive qui a servi à effectuer le choix est exactement équivalente à la définition descriptive donnée.

Nous allons rechercher une définition constructive équivalente à la définition descriptive de l’intégrale[7].

On démontrera d’abord sans peine en s’appuyant sur les conditions 3 et 4 que l’on a la condition S

(S) ,

lorsque est une constante. Ceci posé, soit une fonction quelconque, nous désignerons par l’ensemble des valeurs de pour lesquelles on a , par l’ensemble des valeurs de pour lesquelles on a  ; et nous emploierons d’autres notations analogues.

Soit un intervalle positif contenant à son intérieur l’intervalle de variation de [8] ; partageons cet intervalle en intervalles partiels à l’aide des nombres

,

supposons que ne soit jamais supérieur à .

Désignons par () la fonction égale à 1 quand appartient à , ou à , et nulle pour les autres points ; désignons par () la fonction égale à 1 quand appartient à , ou à et nulle pour les autres points. On a évidemment

.

Lorsque nous saurons intégrer les fonctions qui ne prennent que les valeurs 0 et 1, nous en déduirons, grâce aux conditions 3 et S, les intégrales des et , lesquelles comprennent l’intégrale de (conditions 3, 4)[9].

De plus, et diffèrent de de au plus, donc tendent uniformément vers quand tend vers zéro ; il est facile d’en conclure que leurs intégrales tendent vers celle de .

En effet, si les limites inférieure et supérieure de sont et , d’après 3 et 4, est comprise entre

et ;

faisons maintenant

,

on a

,

donc l’intégrale de est inférieure en module à , quantité qui tend vers zéro avec .

Pour savoir calculer l’intégrale d’une fonction quelconque, il suffit de savoir calculer les intégrales des fonctions qui ne prennent que les valeurs 0 et 1.

Il faut remarquer que nous avons démontré incidemment la possibilité d’intégrer terme à terme les séries uniformément convergentes, si le problème d’intégration est possible.

La quantité qui figure dans la démonstration précédente se calcule facilement ; en se servant de 1, de 2 et de 5, on voit qu’elle est égale à .

Si la fonction est comprise entre et , son intégrale dans est comprise entre et  ; c’est le théorème de la moyenne.

Si nous appliquons ce théorème après avoir décomposé en intervalles partiels, nous trouvons que est comprise entre les sommes qui servent à définir les intégrales par défaut et par excès ; l’intégrale est donc comprise entre les intégrales par défaut et par excès. En particulier, si le problème d’intégration est possible pour les fonctions intégrables au sens de Riemann, il n’admet pas, pour ces fonctions, d’autre solution que l’intégrale de Riemann.


II. — La mesure des ensembles.

Occupons-nous maintenant des fonctions qui ne prennent que les valeurs 0 et 1. Une telle fonction est entièrement définie par l’ensemble des valeurs où elle est différente de 0 ; l’intégrale d’une telle fonction, dans un intervalle positif, est un nombre positif ou nul qu’on peut considérer comme attaché à la partie de l’ensemble comprise dans l’intervalle d’intégration. Si l’on traduit en langage géométrique les conditions du problème d’intégration des fonctions , on a un nouveau problème, le problème de la mesure des ensembles.

Pour l’énoncer, je rappelle que deux ensembles de points sur une droite sont dits égaux si, par le déplacement de l’un d’eux, on peut les faire coïncider, qu’un ensemble est dit la somme des ensembles si tout point de appartient à l’un au moins des [10]. Voici la question à résoudre :

Nous nous proposons d’attacher à chaque ensemble borné, formé de points de , un nombre positif ou nul, , que nous appelons la mesure de et qui satisfait aux conditions suivantes :

1′. Deux ensembles égaux ont même mesure ;

2′. L’ensemble somme d’un nombre fini ou d’une infinité dénombrable d’ensembles, sans point commun deux à deux, a pour mesure la somme des mesures ;

3′. La mesure de l’ensemble de tous les points de (0, 1) est 1.

La condition 3′ remplace la condition 5 ; la condition 2′ provient de l’application des conditions 3 et 6 à la série

,

dans laquelle tous les termes et la somme sont des fonctions  ; quant à la condition 1′ c’est la condition 1. Une explication est cependant nécessaire ; il y a deux espèces d’ensembles égaux : ceux que l’on peut faire coïncider par un glissement de et ceux que l’on peut faire coïncider par une rotation de autour d’un point de  ; c’est aux premiers seulement que s’applique la condition 1′. Je n’ai pas mis cette restriction dans l’énoncé parce que, dans les raisonnements suivants, on peut s’astreindre à ne pas employer d’autres déplacements que des glissements et cependant on obtiendra toujours pour deux ensembles égaux de l’une ou l’autre manière des mesures égales[11].

Une conséquence simple des conditions 1′, 2′, 3′ est que tout intervalle positif a pour mesure sa longueur , que les extrémités fassent ou non partie de l’intervalle[12].

Si l’on se reporte au Chapitre III, on voit immédiatement que, si le problème de la mesure est possible, on a

 ;

pour les ensembles mesurables J, le problème de la mesure est possible au plus d’une manière et la mesure est l’étendue au sens de Jordan.

Soit maintenant un ensemble quelconque , nous pouvons enfermer ses points dans un nombre fini ou une infinité dénombrable d’intervalles non empiétants ; la mesure de l’ensemble des points de ces intervalles est, d’après 2′, la somme des longueurs des intervalles ; cette somme est une limite supérieure de la mesure de . L’ensemble de ces sommes a une limite inférieure , la mesure extérieure de , et l’on a évidemment

.

Soit le complémentaire de par rapport à , c’est-à-dire l’ensemble des points ne faisant pas partie de et faisant partie d’un segment de contenant . On doit avoir

,

donc

 ;

la limite inférieure ainsi trouvée pour , limite qui est nécessairement positive ou nulle, s’appelle la mesure intérieure de ,  ; elle est évidemment supérieure ou au moins égale à l’étendue intérieure de .

Pour comparer les deux nombres , , nous nous servirons d’un théorème dû à M. Borel :

Si l’on a une famille d’intervalles tels que tout point d’un intervalle , y compris et , soit intérieur[13] à l’un au moins des , il existe une famille formée d’un nombre fini des intervalles et qui jouit de la même propriété [tout point de est intérieur à l’un d’eux].

Soit l’un des intervalles contenant , la propriété à démontrer est évidente pour l’intervalle , si est compris entre et  ; je veux dire que cet intervalle peut être couvert à l’aide d’un nombre fini d’intervalles , ce que j’exprime en disant que le point est atteint. Il faut démontrer que est atteint. Si est atteint, tous les points de le sont ; si n’est pas atteint, aucun des points de ne l’est. Il y a donc, si n’est pas atteint, un premier point non atteint, ou un dernier point atteint ; soit ce point. Il est intérieur à un intervalle , . Soient un point de , un point de  ; est atteint par hypothèse, les intervalles en nombre fini qui servent à l’atteindre, plus l’intervalle , permettent d’atteindre  ; n’est donc ni le dernier point atteint, ni le premier non atteint ; donc est atteint[14].

Du théorème de M. Borel il résulte que si l’on a couvert tout un intervalle à l’aide d’une infinité dénombrable d’intervalles , la somme des longueurs de ces intervalles est au moins égale à la longueur de l’intervalle [15]. En effet, on peut aussi couvrir à l’aide d’un nombre fini des intervalles et le théorème, étant évidemment vrai quand on ne considère que ces intervalles en nombre fini, l’est a fortiori quand on considère tous les intervalles .

Reprenons maintenant l’ensemble et son complémentaire . Enfermons le premier dans une infinité dénombrable d’intervalles , le second dans les intervalles , on a

,

puisque est couvert par les intervalles et . De là, on déduit

La mesure intérieure n’est jamais supérieure à la mesure extérieure.

Les ensembles dont les deux mesures extérieure et intérieure sont égales sont dits mesurables et leur mesure est la valeur commune des et [16]. Il reste à rechercher si cette mesure satisfait bien aux conditions 1′, 2′, 3′. Cela est évident pour 1′ et 3′, reste à étudier la condition 2′[17]. Au cours de notre vérification nous utiliserons ce fait évident que la partie d’un ensemble , qui est contenue dans un intervalle , est certainement mesurable toutes les fois que est mesurable.

Soient , , … des ensembles mesurables, en nombre fini ou dénombrable, n’ayant deux à deux aucun point commun, et soit l’ensemble somme.

De la définition des ensembles mesurables, il résulte qu’on peut enfermer dans une infinité dénombrable d’intervalles et dans des intervalles de manière que la mesure des parties communes aux et soit égale à  ; les étant des nombres positifs choisis de manière que la série soit convergente et de somme .

Soient , les parties des et qui sont contenues dans les intervalles  ; soient , les parties des , qui sont contenues dans les et ainsi de suite. est enfermé dans . est donc enfermé dans , sa mesure extérieure est donc au plus égale à la somme  ; évaluons cette somme. On a évidemment

d’où, par addition,

et ceci suffit pour montrer que la série est convergente ; d’ailleurs on a

,

donc est comprise entre et . Cela donne

.

Le complémentaire de , , peut être enfermé dans  ; or a, en commun avec , les intervalles , plus une partie des intervalles communs, à , une partie de ceux communs à , …, une partie de ceux communs à  ; a donc une mesure au plus égale à

,

et, par suite,

,

c’est-à-dire

,

ou

.

Les limites inférieure et supérieure trouvées respectivement pour et montrent que ces deux quantités sont égales, l’ensemble est donc mesurable et de mesure , la condition 2′ est bien vérifiée.

L’ensemble des ensembles mesurables contient l’ensemble des ensembles mesurables J, mais il est beaucoup plus vaste, comme on va le voir. On peut, en effet, sans sortir de l’ensemble des ensembles mesurables, effectuer sur des ensembles mesurables les deux opérations suivantes :

I. Faire la somme d’une infinité dénombrable d’ensembles ;

II. Prendre la partie commune à tous les ensembles d’une famille contenant un nombre fini ou une infinité dénombrable d’ensembles.

Pour le démontrer, remarquons d’abord que la seconde opération ne diffère pas essentiellement de la première, car si est la partie commune à , , …, est la somme de , , …. Il suffit donc de s’occuper de la première ; soit

.

Si est l’ensemble des points de ne faisant pas partie de , on a

,

les termes de la somme étant sans point commun deux à deux. Or, il est facile de voir que est mesurable ; en effet, enfermons dans les intervalles , dans les intervalles , dans , dans et soient et les longueurs des parties communes aux et d’une part, aux et d’autre part. Si et sont les parties des et communes aux , peut être enfermé dans et dans et les parties communes à ces deux systèmes d’intervalles ont une mesure au plus égale à , donc est mesurable. De là résulte que

,

est mesurable, donc que , partie de n’appartenant pas à l’ensemble mesurable , est mesurable et ainsi de suite. Tous les sont mesurables, l’est[18].

Un intervalle étant un ensemble mesurable, en appliquant les opérations I et II un nombre fini ou une infinité dénombrable de fois à partir d’intervalles, nous obtenons des ensembles mesurables ; ce sont ceux-là que M. Borel avait nommés ensembles mesurables, appelons-les ensembles mesurables B. Ce sont les plus importants des ensembles mesurables ; tandis que, pour un ensemble quelconque, nous pouvons seulement affirmer l’existence des deux nombres , , sans pouvoir dire quelle suite d’opérations il faut effectuer pour les calculer, il est facile d’avoir la mesure d’un ensemble mesurable B en suivant pas à pas la construction de cet ensemble. On se servira de la propriété 2′ toutes les fois qu’on utilisera l’opération I ; quand on se servira de l’opération II, on emploiera un théorème dont la démonstration est immédiate :

La mesure de la partie commune à des ensembles , , … est la limite de si chaque ensemble contient tous ceux d’indice plus grand[19].

Les ensembles fermés sont mesurables B parce qu’ils sont les complémentaires d’ensembles formés des points intérieurs à un nombre fini ou à une infinité dénombrable d’intervalles. Soit un tel ensemble, la mesure de son complémentaire est évidemment l’étendue intérieure de ce complémentaire, donc la mesure d’un ensemble fermé est son étendue extérieure. De là découle la propriété qui nous a servi : un ensemble fermé de mesure nulle est un groupe intégrable (p. 29).

Comme application de ces considérations théoriques, calculons la mesure de l’ensemble des points de (0, 1) tels que la suite de leurs chiffres décimaux de rang impair soit périodique (p. 99). Soit

un tel nombre, écrivons-le

est rationnel, l’ensemble des nombres est dénombrable. À chaque nombre rationnel correspond un ensemble de nombres ayant même mesure que l’ensemble des nombres dont les chiffres de rang impair sont nuls. Pour démontrer que est mesurable et de mesure nulle, il suffit donc de démontrer que l’ensemble des nombres jouit de cette propriété. Or cet ensemble s’obtient en enlevant de (0, 1) l’intervalle , puis de les intervalles , où est un entier inférieur à 10, puis de chaque intervalle restant les intervalles , et ainsi de suite. À chaque opération nous enlevons les 9/10 des intervalles qui restent. L’ensemble des est donc mesurable B et de mesure nulle.


III. — Les fonctions mesurables.

Pour que les considérations précédentes nous permettent d’attacher une intégrale à une fonction , il faut que, si petit que soit , nous puissions trouver les nombres (p. 108) tels que les fonctions correspondantes soient, ainsi que les fonctions , associées à des ensembles mesurables. Supposons que les ensembles correspondant aux soient mesurables, et soient et deux nombres quelconques. À un nombre correspond un certain système de nombres  ; soient le plus petit de ceux qui sont compris entre et , et le plus grand. L’ensemble

est mesurable ; or quand on donne à une suite de valeurs décroissantes tendant vers zéro , , …, on a

,

donc est mesurable.

Nous dirons qu’une fonction bornée ou non est mesurable si, quels que soient et , l’ensemble est mesurable. Lorsqu’il en est ainsi, l’ensemble est aussi mesurable, car il est la partie commune aux ensembles quand tend vers zéro. On verrait de même que, pour qu’une fonction soit mesurable, il faut et il suffit que l’ensemble soit mesurable, quel que soit  ; ou encore qu’il faut et qu’il suffit que les ensembles soient mesurables. On verrait aussi que est mesurable si, et seulement si, pour chaque valeur de , il existe un ensemble, que nous noterons , contenu dans et contenant qui soit mesurable.

La somme de deux fonctions mesurables est une fonction mesurable. Soient les deux fonctions mesurables et  ; à tout nombre faisons correspondre une division de leur intervalle de variation, fini ou non, à l’aide de nombres , tels que soit au plus égale à , et considérons les ensembles de valeurs de , tels que l’on ait à la fois

,() ;

est mesurable comme partie commune à et à .

La somme des ensembles est mesurable, puisque chacun d’eux l’est ; et si l’on donne à des valeurs tendant vers zéro, on a

,

donc est une fonction mesurable.

On démontrerait de même que l’on peut effectuer, sur des fonctions mesurables, toutes les opérations dont il a été parlé au sujet des fonctions intégrables (p. 30) sans cesser d’obtenir des fonctions mesurables. Mais il y a plus : la limite d’une suite convergente de fonctions mesurables est une fonction mesurable ; si tend vers , on obtient en effet un ensemble , en faisant la somme des ensembles  ; étant la partie commune aux ensembles , , …, et tous ces ensembles sont mesurables si les fonctions sont mesurables.

Appliquons ces résultats ; les deux fonctions , sont évidemment mesurables, donc tout polynôme est mesurable. Toute fonction limite de polynômes est aussi mesurable : donc, d’après un théorème de Weierstrass, toute fonction continue est mesurable. Les fonctions discontinues limites de fonctions continues, que M. Baire appelle fonctions de première classe, sont mesurables. Les fonctions qui ne sont pas de première classe et qui sont limites de fonctions de première classe (M. Baire les appelle fonctions de seconde classe) sont des fonctions mesurables.

Remarquons encore que les fonctions ainsi formées de proche en proche sont mesurables B, c’est-à-dire que les ensembles qui leur correspondent sont mesurables B ; ce sont ces fonctions que nous rencontrerons uniquement.

On peut souvent démontrer qu’une fonction est mesurable en se servant de la propriété suivante : si, en faisant abstraction d’un ensemble de valeurs de de mesure nulle, la fonction est continue, elle est mesurable. Car les points limites de l’ensemble qui ne font pas partie de cet ensemble font nécessairement partie de l’ensemble de mesure nulle négligé, donc ils forment un ensemble de mesure nulle. L’ensemble , étant fermé à un ensemble de mesure nulle près, est mesurable. On voit ainsi, en particulier, que toute fonction intégrable au sens de Riemann est mesurable ; on voit aussi que la fonction de Dirichlet, qui est non intégrable, est mesurable.


IV. — Définition constructive de l’intégrale.

Définissons maintenant l’intégrale d’une fonction mesurable bornée en supposant l’intervalle d’intégration positif. Nous savons que, s’il s’agit d’une fonction , cette intégrale est

,

et que, s’il s’agit d’une fonction quelconque, l’intégrale doit être la limite commune des intégrales de et (p. 108) quand le maximum de tend vers zéro. D’après les conditions du problème d’intégration, ces intégrales sont

Nous savons déjà que ces deux nombres diffèrent de moins de parce que est inférieure à . Si nous faisons tendre vers zéro, en intercalant entre les de nouveaux nombres, alors croît, décroît, tend vers zéro ; donc et ont une même limite.

Soient ,  ; ,  ; … les sommes obtenues par ce procédé ; soient ,  ; ,  ; … les sommes obtenues en faisant tendre vers zéro d’une autre manière[20] ; soient , les sommes obtenues en réunissant les nombres donnant , et ,  ; soient , celles obtenues en réunissant les donnant ,  ; ,  ; ,  ; et ainsi de suite. On a évidemment

la seconde de ces inégalités montre que et ont la même limite que et , car nous savons que et ont une limite et que tend vers zéro. La première montre que cette limite est aussi celle de et .

La valeur de la limite, c’est-à-dire de l’intégrale, est donc indépendante de la manière dont le maximum de tend vers zéro.

Nous complétons cette définition en posant

.

Il reste à voir si l’intégrale satisfait bien aux conditions du problème d’intégration[21].

Débarrassons-nous tout d’abord des conditions 1, 2, 4, 5. Il n’y a rien à dire pour cette dernière. La condition 4 résulte de ce que , par exemple, est positif quand est positive ou nulle.

La condition 1 résulte, pour le cas d’un intervalle positif, de ce que les sommes formées pour les deux intégrales , , à l’aide des mêmes nombres , sont identiques. Et de là on passe au cas d’un intervalle négatif.

Pour vérifier la condition 2 il suffit évidemment d’examiner le cas  ; alors si l’on se sert des mêmes pour calculer les valeurs approchées , , des intégrales

,,,

on a évidemment

 ;

car on a des égalités analogues entre les mesures des ensembles correspondants qui interviennent dans ces trois sommes .

Reste donc les conditions 3 et 6 qu’il suffira de vérifier pour un intervalle positif et, pour cela, démontrons d’abord que, dans un tel intervalle, on a

,

lorsque l’on a

,

Servons-nous des mêmes nombres convenablement choisis, , , pour calculer des valeurs approchées et des deux intégrales. Désignons par et les deux ensembles

,,

on a

Or, à cause de , contient

et, pour , ces deux ensembles sont identiques. Donc les premiers termes de et sont égaux et les autres termes sont plus petits, en valeur absolue, dans que dans , ce qui prouve la première inégalité

.

Puisque l’on a

,

on a donc

 ;

pour calculer cette dernière intégrale de façon approchée servons-nous des nombres , ,  ; il est clair que l’on trouve

d’où

.

On peut encore dire que si deux fonctions diffèrent de moins de leurs intégrales diffèrent de moins de  ; car, dire que et diffèrent de moins de , c’est dire que est comprise entre et  ; donc que est comprise entre

et.

Ceci posé, soient et deux fonctions mesurables et bornées dans l’intervalle positif  ; nous avons appris (p. 108) à leur associer des fonctions et ne prenant qu’un nombre fini de valeurs et différant respectivement de et de de moins de .

diffère alors de de moins de . On a donc

,,
.

L’égalité à démontrer,

,

résultera donc de celle-ci :

,

Or, supposons que ne prenne que les valeurs , , … et respectivement aux points des ensembles , , … ; que ne prenne que les valeurs , , … et aux points de , , …. Et soit l’ensemble des points communs à et à , on a

La condition 3 est donc bien remplie.

La condition 6 est aussi remplie, car on a la propriété suivante :

Si les fonctions mesurables , bornées dans leur ensemble, c’est-à-dire quels que soient et , ont une limite , l’intégrale de tend vers celle de .

En effet, nous savons que est intégrable ; évaluons

.

Si l’on a toujours et si est inférieure à dans , , étant inférieure à la fonction égale à dans et à dans , a une intégrale au plus égale en module à

.

Mais est quelconque, et tend vers zéro avec parce qu’il n’y a aucun point commun à tous les , donc

tend vers zéro. La propriété est démontrée[22].

Une autre forme de ce théorème est la suivante :

Si tous les restes d’une série de fonctions mesurables et bornées sont en module inférieurs à un nombre fixe , la série est intégrable terme à terme.

Les définitions et les résultats précédents peuvent être étendus à certaines fonctions non bornées. Soit une fonction mesurable non bornée. Choisissons des nombres …, , , , , , …, en nombre infini, échelonnés de à et tels que soit toujours inférieur à . Nous pouvons former les deux séries, infinies dans les deux sens,

En reprenant les raisonnements précédents, on voit immédiatement que, si l’une d’elles est convergente, et par suite absolument convergente car tous les termes d’indice assez petit sont négatifs ou nuls et tous ceux d’indice assez grand sont positifs ou nuls, l’autre l’est aussi et que, dans ces conditions, et tendent vers une limite bien déterminée quand le maximum de tend vers zéro d’une manière quelconque. Cette limite est, par définition, l’intégrale de dans l’intervalle positif d’intégration ; on passe de là à un intervalle négatif comme précédemment.

Nous appellerons fonctions sommables les fonctions auxquelles s’applique la définition constructive de l’intégrale ainsi complétée[23]. Toute fonction mesurable bornée est sommable[24].

Si est une fonction sommable, est aussi sommable et, si l’intervalle d’intégration est positif, on a

,

car les valeurs approchées des deux membres sont et la somme des valeurs absolues des termes de . Si est sommable et si désigne la fonction égale à quand est comprise entre et et nulle lorsque cela n’a pas lieu, on a, pour et tendant vers ,

,

car les valeurs approchées des deux membres sont et la limite de la contribution dans des termes à indices compris entre et , quand et augmentent indéfiniment[25]. On aurait la même égalité si l’on avait assujetti à être respectivement égale à et , au lieu d’être nulle, quand est respectivement inférieure à ou supérieure à .

On ne connaît aucune fonction bornée non sommable, il est facile au contraire de citer des fonctions non bornées non sommables. La fonction nulle pour et égale à

en est un exemple ; cependant cette fonction peut être intégrée par les méthodes de Cauchy et de Dirichlet développées au Chapitre I. On pourra, dans certains cas, appliquer ces méthodes aux fonctions non sommables pour définir leur intégrale ; nous reviendrons sur cette généralisation, bornons-nous pour l’instant aux fonctions sommables.

Mais nous allons faire subir à cette notion une nouvelle extension : supposons qu’une fonction ne soit donnée, ou ne soit considérée qu’aux points d’un ensemble  ; nous pourrons encore former des ensembles quels que soient et , mais maintenant ces ensembles seront tous contenus dans . Si ces ensembles sont mesurables, quels que soient et , nous dirons que est mesurable dans . Remarquons que ceci entraîne que lui-même soit mesurable car est la somme des différents relatifs à un choix des nombres .

Si est mesurable dans , on peut donc former et . Si l’une de ces sommes est convergente, auquel cas les deux le sont, est dite sommable dans , et l’intégrale de étendue à , , est la limite commune vers laquelle tendent et , quand on fait varier le choix des de façon que le maximum de tende vers zéro.

En somme rien n’est changé à la définition et nous aurions pu nous borner à dire que

 ;

étant un intervalle positif contenant et étant une fonction égale à aux points de et nulle aux autres points. Cette seconde définition va nous permettre de conclure très facilement des propriétés des intégrales dans des intervalles aux propriétés des intégrales dans des ensembles.

Nous nous sommes écartés du problème d’intégration tel que nous l’avions posé au début du Chapitre ; comment faut-il le modifier pour qu’il fournisse une définition descriptive des intégrales de fonctions sommables dans des ensembles mesurables ? Pour répondre à cette question remarquons tout d’abord que l’on a toujours une proposition analogue à celle du no 6 du problème d’intégration ; d’une façon plus précise : si, quand l’indice croit, la fonction , sommable dans un ensemble mesurable , tend en croissant vers la fonction , sommable dans , l’intégrale de dans tend en croissant vers celle de .

En effet, nous pouvons supposer les non négatives sans quoi nous raisonnerions sur les fonctions . Les étant positives ou nulles, il en est de même de . Posons

,,

étant égale à quand est inférieure à un nombre positif arbitrairement choisi , et égale à dans le cas contraire ; étant égale à quand est égale à , et égale à dans le cas contraire. est la limite des , est non supérieur à .

On a

, ;

à la vérité ceci n’est tout à fait clair que s’il s’agit d’intégrales étendues à un intervalle, mais, par le passage de à , nous pouvons toujours supposer qu’il en est ainsi.

Nous avons dit, il y a un instant, que si l’on fait augmenter indéfiniment tend vers , donc tend vers zéro. Prenons assez grand pour que soit inférieur à  ; il en sera de même de , a fortiori. Or, d’après la condition 6 pour les fonctions mesurables bornées et , tend vers . Donc, on a

et la proposition en résulte de suite.

Ce cas d’intégration terme à terme des suites peut, comme précédemment, être transformé en cas d’intégration terme à terme des séries : une série convergente de fonctions non négatives, dont tous les termes et la somme sont sommables dans un ensemble , est intégrable terme à terme dans [26].

Appliquons ceci au cas particulier suivant : Soit une fonction sommable dans un ensemble mesurable  ; partageons en un nombre fini ou en une infinité dénombrable d’ensembles mesurables , sans point commun deux à deux et soit la fonction égale à dans et nulle en dehors de . La proposition précédente sur l’intégration des séries peut être appliquée à

,

en supposant toujours positive ou nulle, or

,

donc

.

Si est parfois négative, on arrivera au même résultat en appliquant la formule ci-dessus à , puis à et en ajoutant.

En rapprochant ce résultat des précédents, on peut dire : l’intégrale , étendue à un ensemble mesurable , d’une fonction sommable dans , est un nombre vérifiant les propriétés suivantes :

1o Si est l’ensemble des valeurs de telles que appartienne à , on a

 ;

2o Si est la somme des ensembles mesurables , , …, en nombre fini ou en infinité dénombrable et sans point commun deux à deux, on a

 ;

3o

étant supposée, comme , sommable dans  ;

4o Si l’on a , on a

 ;

5o

.

Le lecteur vérifiera facilement que ces propriétés sont caractéristiques de l’intégrale, nous avons donc ici une définition descriptive de l’intégrale d’une fonction sommable dans un ensemble mesurable. Le nouvel énoncé du problème d’intégration ne contient plus que cinq conditions, mais cela ne révèle aucune différence essentielle entre le nouveau problème et l’ancien.

En réalité, on aurait pu réunir les anciennes conditions 3 et 6 en un seul énoncé relatif à un cas d’intégration des sommes ou séries ; remarquons d’ailleurs que nous avons déjà effectué (p. 110), à l’occasion de la mesure des ensembles, la transformation de la condition 6, relative à une série de fonctions, en notre nouvelle condition 2, relative à une série d’ensembles.

C’est surtout pour le calcul effectif des intégrales de fonctions données par des développements en série qu’il importe de connaître des cas d’intégration terme à terme. M. Vitali a écrit sur ce sujet un très important Mémoire que je ne puis ici que signaler[27] ; je me borne à donner un cas d’intégration un peu plus étendu que les précédents :

Une série convergente de fonctions sommables est intégrable terme à terme lorsque tous ses restes sont, en module, inférieurs à une fonction sommable déterminée

.

Soit la somme de la série. L’inégalité évidente

montre que est sommable. Ceci étant, partageons l’intervalle ou l’ensemble dans lequel on intègre en trois ensembles mesurables sans points communs deux à deux : le premier de ces ensembles est formé des points en lesquels surpasse un nombre , le second est formé des points n’appartenant pas à et en lesquels le reste est en module inférieur à , les points restants forment . On a


supposons choisi de façon que soit inférieur à  :

Or, quand augmente indéfiniment, tend vers zéro, car l’ensemble est contenu dans tous ceux d’indice moindre et il n’y a pas de points communs à tous les puisqu’en un tel point la série divergerait. Donc, pour assez grand, on a

Le théorème est donc démontré.

Remarquons que, dans l’énoncé de ce théorème, nous n’avons pas eu à supposer que la limite était sommable alors que nous avions eu à formuler cette hypothèse dans l’énoncé de la page 128. On peut, avec M. B. Levi[28], transformer ce dernier énoncé de façon à n’avoir plus rien à supposer sur la limite . Pour donner à la proposition toute sa portée, définissons ce qu’on entend par une fonction mesurable non toujours finie. C’est une fonction qui prend, en tout point de l’intervalle ou de l’ensemble considéré, une valeur déterminée en grandeur et en signe, mais non toujours finie. Pour une telle fonction , il y a donc en général un ensemble et un ensemble . En disant que est mesurable on exprime que ces deux ensembles sont mesurables et que est mesurable dans l’ensemble des points où elle est finie. On peut encore dire si l’on veut que l’ensemble , ou l’ensemble , ou l’ensemble , est mesurable quels que soient les nombres finis ou infinis et .

L’énoncé annoncé est relatif aux suites croissantes de fonctions mesurables, une telle suite a une limite nécessairement mesurable mais qui n’est pas nécessairement partout finie.

Soit la limite d’une suite croissante de fonctions finies et sommables.

Si la suite des intégrales des fonctions converge, n’est infinie qu’aux points d’un ensemble de mesure nulle, est sommable dans l’ensemble des points où elle est finie et l’intégrale de est la limite des intégrales des .

Si la suite des intégrales des tend vers l’infini, est infinie aux points d’un ensemble de mesure non nulle, ou est non sommable dans l’ensemble des points où elle est finie.

ne prend nulle part la valeur  ; au reste nous pouvons raisonner uniquement sur l’ensemble des points où , et a fortiori , est positive. Si est de mesure non nulle , sera supérieur à un nombre aux points d’un ensemble de mesure au moins dès que sera assez grand, l’intégrale de sera supérieure à  ; et comme est quelconque, la suite des ne peut converger.

Supposons donc de mesure nulle, et enlevons cet ensemble de l’ensemble d’intégration, ce qui ne modifie pas les intégrales des . Nous voici ramenés aux suites croissantes de fonctions toujours finies ayant une limite toujours finie ; donc, si est sommable, la série des intégrales de converge vers l’intégrale de (p. 128) ; si est non sommable, c’est que l’intégrale de la fonction , égale à quand est inférieure à et nulle ailleurs, augmente indéfiniment quand croît indéfiniment ; et comme la limite de surpasse , la suite des intégrales est divergente. Ce qui justifie l’énoncé.


V. — Autres formes de la définition de l’intégrale.

Nous venons de définir l’intégrale et par ses propriétés et par une construction et nous avons obtenu des procédés de calcul des intégrales des fonctions données par des développements en série. Arrivés à ce point il ne sera pas inutile de regarder en arrière et de résumer ce que nous avons fait.

Pour la construction de l’intégrale d’une fonction mesurable bornée définie dans un intervalle, nous avons déduit des conditions de notre problème primitif d’intégration :

a. La valeur de l’intégrale pour les fonctions ne prenant que deux valeurs, zéro et une constante ;

b. Le cas d’intégration terme à terme des séries monotones ou qui deviennent monotones quand on supprime les premiers termes ;

c. Nous avons prouvé que toute fonction mesurable est la somme d’une série de fonctions intégrable terme à terme d’après b.

Il est clair que cette construction de l’intégrale pourra être modifiée de bien des manières ; il suffira : a. de partir de la connaissance de l’intégrale d’une classe assez vaste de fonctions particulières ; b. et d’utiliser un caractère d’intégration terme à terme des séries, que l’on posera a priori, et assez général pour qu’on puisse affirmer : c. que toute fonction mesurable est la somme d’une série de la nature considérée de fonctions appartenant à la classe envisagée. J’examinerai seulement[29] et très rapidement une définition de M. W.-H. Young.

a. Il part de l’intégrale des fonctions continues.

b. Il admet que toute suite monotone est intégrable terme à terme.

Il a alors l’intégrale des fonctions et limites respectivement des suites croissantes et décroissantes de fonctions continues ;

Puis les intégrales des fonctions et limite respectivement de suites croissantes de fonctions et décroissantes de fonctions  ;

Puis les intégrales des fonctions , , etc.

Il faut naturellement démontrer que cette façon de procéder ne conduit pas à des contradictions, aussi M. Young prouve que l’intégration des suites monotones qu’il considère donne bien une suite d’intégrales convergentes et qu’à des suites monotones convergeant vers la même limite correspondent des suites d’intégrales de même limite.

c. Il faut aussi délimiter la famille des fonctions ainsi intégrées. En s’en tenant aux définitions précédentes[30], ces fonctions ne seraient pas toutes les fonctions mesurables, mais ce seraient toutes les fonctions mesurables B, c’est-à-dire toutes les fonctions mesurables pratiquement utiles à considérer. Et, de plus, la méthode même de M. Young fournit chemin faisant une classification de ces fonctions mesurables B qui est en rapport avec la classification de M. Baire (p. 120) et qui est fort intéressante.

Si nous étions partis : a. de l’intégrale des fonctions continues et b. du cas d’intégration des suites uniformément bornées (p. 125), c’est la classification de M. Baire qui se serait présentée à nous.

M. W.-H. Young a aussi fait connaître[31] la propriété suivante qui peut être prise pour définition de l’intégrale :

Une fonction mesurable bornée étant donnée dans un intervalle fini et positif , divisons en un nombre fini ou en une infinité dénombrable d’ensembles , , … mesurables et sans points communs deux à deux. Soit la mesure de , soient et les limites inférieure et supérieure de dans , formons les sommes ou séries

, ;

et, faisant varier le choix des , déterminons la borne supérieure des et la borne inférieure des . Ces deux bornes sont égales entre elles et à .

En effet, calculons la contribution des points de

dans et . Les points de sont répartis dans certains des  ; ils forment l’ensemble contenu dans , l’ensemble contenu dans , etc. Pour toutes les valeurs de , , … de le nombre est au plus égal à , donc la contribution de est au plus et celle de est au plus . Donc, on a

,

et en faisant tendre vers zéro,

.

Mais de même, on trouvera

.

D’où il résulte

.

Mais il suffit de prendre les identiques aux pour que la différence soit au plus égale à . Donc .

L’analogie de la définition de M. W.-H. Young et de celle de Riemann (exposée p. 24) est évidente. Remarquons que notre définition constructive de l’intégrale est aussi très analogue à celle de Riemann ; seulement, alors que Riemann divisait en petits intervalles partiels l’intervalle de variation de , c’est l’intervalle de variation de que nous avons subdivisé.

Cette façon d’opérer s’imposait et ses avantages sont évidents. Lorsque l’on forme la somme pour une fonction continue , on groupe des valeurs de fournissant des valeurs peu différentes de et c’est parce que ces valeurs sont peu différentes qu’on peut les remplacer dans par l’une d’elles . Mais, si est discontinue, il n’y a plus aucune raison que des choix d’intervalles de plus en plus petits conduisent à grouper des valeurs de de moins en moins différentes. Et c’est pourquoi le procédé de Riemann ne réussit que rarement et en quelque sorte par hasard. Puisque nous voulons grouper des valeurs peu différentes de , il est bien clair que nous devons, comme nous l’avons fait dans ce Chapitre, subdiviser l’intervalle de variation de et non l’intervalle de variation de .

On peut encore dire, en adoptant un langage en usage au xviie siècle : celui des indivisibles, que nous avons à faire la somme des divers indivisibles attachés à la fonction donnée , c’est-à-dire des ordonnées positives ou négatives des points . Pour cela, nous avons fait comme en Algèbre quand on effectue la réduction des termes semblables, comme en Arithmétique quand, pour additionner des nombres, on fait la somme des chiffres unités, puis des chiffres dizaines, etc., nous avons réuni les indivisibles de même grandeur ou à peu près de la même grandeur.

Nous allons maintenant effectuer la sommation de ces indivisibles en groupant tous ceux qui sont positifs et tous ceux qui sont négatifs et nous aurons ainsi une définition analogue à celle du Chapitre III. Pour cela, nous supposerons résolu le problème de la mesure des ensembles formés de points dans un plan, problème que l’on pose comme pour le cas de la droite, la condition 3′ devenant : la mesure de l’ensemble des points dont les coordonnées vérifient les inégalités

,,

est 1.

On démontrera facilement que la mesure d’un carré est son aire, au sens élémentaire du mot. De là on déduira que la mesure d’un ensemble quelconque est comprise entre sa mesure extérieure et sa mesure intérieure, mesures qu’on définira comme dans le cas de la droite, les carrés remplaçant les intervalles.

Pour démontrer que la mesure intérieure ne surpasse jamais la mesure extérieure, il faudra démontrer qu’un carré ne peut être couvert à l’aide d’un nombre fini de carrés que si la somme des aires des est au moins égale à l’aire de , ce que l’on peut faire élémentairement[32] ; puis il faudra démontrer le théorème de M. Borel lorsqu’on remplace dans son énoncé le mot intervalle par le mot carré ou le mot domaine.

La démonstration peut se faire comme pour le cas de la droite, mais je veux, à cette occasion, indiquer comment on peut employer la courbe de M. Peano et les autres courbes analogues (p. 44). Soit le domaine tel que tout point intérieur à ou frontière de soit intérieur à l’un des domaines . Nous pouvons définir, à l’aide d’un paramètre variant de 0 à 1, une courbe qui remplit le domaine et qui ne passe par aucun point extérieur[33]. Chaque domaine découpe sur des arcs correspondant à certains intervalles de variation pour , soient ces intervalles. Un domaine peut d’ailleurs avoir des points de sa frontière communs avec , ces points ne formant pas d’intervalles ; nous négligeons ces points et nous ne nous occupons que des intervalles. (0, 1) est évidemment couvert avec les , donc avec un nombre fini d’entre eux, d’après le théorème de M. Borel pour le cas de la droite, et, par suite, est couvert avec les en nombre fini qui correspondent à ces .

Cette propriété démontrée, la suite des raisonnements et des définitions se poursuit comme dans le cas de la droite, les intervalles étant toujours remplacés par des carrés. Comme dans le cas de la droite on définit les ensembles mesurables, les ensembles mesurables B, et l’on démontre à leur sujet les mêmes propriétés.

Il ne faut pas confondre la mesure des ensembles de points dans le plan avec celle des ensembles de points d’une droite ; nous les distinguerons lorsqu’il y aura doute en les qualifiant mesure superficielle et mesure linéaire [34].

Arrivons à la définition de l’intégrale.

À toute fonction attachons les deux ensembles superficiels

par analogie avec ce qui a été fait précédemment (Chap. III, p. 46), il est naturel d’appeler intégrale de la fonction la quantité

.

Étudions dans quels cas cette définition s’applique ; nous allons démontrer que c’est lorsque la fonction est mesurable et seulement dans ce cas. Pour cela, il suffira évidemment de le démontrer pour la fonction égale à quand n’est pas négative, et nulle quand est négative ; c’est de cette fonction que nous allons nous occuper.

Quand on fait décroître , l’ensemble linéaire ne perd aucun point, de là on déduit que les mesures linéaires inférieure et supérieure et sont des fonctions non croissantes. De plus, est l’ensemble des points qui appartiennent à tous les  ; de là on déduit que et sont des fonctions de continues à gauche. Ceci posé, supposons que l’on ait

,

alors il en sera encore de même dans tout un certain intervalle . Considérons la partie de comprise entre et . Enfermons les points de dans des carrés , les points de dans des carrés  ; on peut supposer les et de côtés parallèles à et . Ils ont en commun des rectangles dont la somme des aires est au moins et en diffère aussi peu que l’on veut. La section des carrés par la droite est composée d’intervalles qui enferment , celle des carrés est composée d’intervalles qui enferment , celle des rectangles est formée des parties communes aux et  ; on a donc

 ;

est donc supérieure à quand varie de à , et est au moins égale à . et par suite n’est donc mesurable que si est mesurable.

Supposons que bornée soit mesurable et partageons l’intervalle de variation de à l’aide de nombres . Soit la partie de comprise entre et , nous allons évaluer sa mesure. Enfermons dans des intervalles les points de et ceux de dans des intervalles , soient les intervalles faisant partie des et des . Considérons l’ensemble des points dont les abscisses sont points de et dont les ordonnées sont comprises entre et  ; soit l’ensemble analogue relatif à . L’ensemble étant contenu dans , on a

,

de là on déduit

.

En faisant la somme de toutes les inégalités analogues, on a

.

En raisonnant d’une façon analogue, on voit que

.

Nous avons démontré que les deux quantités et tendent vers une même limite quand le maximum de tend vers zéro, donc est mesurable. Les valeurs approchées et trouvées pour la mesure de nous conduisent à la définition de l’intégrale déjà donnée. Il y a donc identité entre la définition géométrique actuelle et la définition constructive précédemment étudiée[35].

  1. Le mot bornée est nécessaire si l’on veut que l’intégrale soit toujours finie.
  2. Elle paraît si peu nécessaire qu’elle est généralement inconnue, même pour le cas où et sont intégrables au sens de Riemann ou mêmes continues. Il se pourrait d’ailleurs que certaines de ses conséquences aient, au contraire, un très grand caractère de nécessité. C’est pour préparer l’introduction de cette condition 6 que je me suis occupé aux pages 94 et 103 de l’intégration et de la recherche de la fonction primitive de la limite d’une suite croissante de fonctions.
  3. La réponse à cette question importe peu pour les applications, mais elle présente un intérêt au point de vue des principes. S’il était démontré que cette sixième condition est indépendante des cinq autres, il y aurait lieu de chercher à la remplacer par une sixième plus simple et surtout de rechercher si, parmi les systèmes de nombres qui satisfont seulement aux cinq premières conditions, il n’y en a pas d’aussi utiles que celui qui va être étudié.

    Peu de temps avant cette seconde édition, M. St. Banach a étudié la question qui avait été ainsi posée dans la première édition, et a conclu à l’indépendance des six conditions du problème d’intégration (Fund. Math., t. IV).

  4. L’emploi de ces définitions descriptives est indispensable pour les premiers termes d’une science quand on veut construire cette science d’une façon purement logique et abstraite. Voir la Thèse de M. J. Drach (Annales de l’École Normale, 1898) et le Mémoire de M. Hilbert sur les fondements de la Géométrie (Annales de l’École Normale, 1900). La définition est dite alors axiomatique, parce qu’elle énumère les axiomes nécessaires. Elle se suffit ainsi à elle-même et forme un tout complet.

    Au contraire, les définitions descriptives posées au cours du développement d’une théorie, la définition de l’intégrale par exemple, ne prétendent pas énumérer tous les axiomes sur lesquels elles s’appuient ; elles ne forment pas un tout complet et ne sauraient être isolées de l’exposé du reste de la théorie.

  5. C’est-à-dire qu’aucune de leurs conséquences ne soit de la forme : A est non A. Il y a lieu aussi, comme je l’ai déjà dit, de rechercher si les conditions sont indépendantes.
  6. Voir le Mémoire déjà cité de M. Hilbert. C’est parce que l’on peut démontrer la compatibilité des conditions énoncées dans les définitions descriptives des premiers termes de la Géométrie à l’aide du système des nombres entiers qu’il est légitime de dire que la Géométrie peut être tout entière construite à partir de l’idée de nombre. Au point de vue de l’arithmétisation de la science, l’intérêt principal de la définition précise de l’intégrale, telle que l’a posée Cauchy, c’est qu’elle ramène les diverses notions de grandeur qui interviennent en géométrie (aire, volume, longueur des courbes, etc.) à celle de la longueur d’un segment, c’est-à-dire de différence de deux nombres. Cette définition de Cauchy parachève l’œuvre de Descartes qui, par l’emploi de coordonnées, ramenait toutes les géométries à celle de la droite.
  7. En se plaçant au même point de vue, on peut dire que les travaux exposés dans cet Ouvrage ont pour but principal la recherche d’une définition constructive équivalente à la définition descriptive des fonctions primitives.
  8. En d’autres termes, les limites inférieure et supérieure de sont comprises entre et mais non égales à  ; avec les notations du texte, il n’y aurait ici rien à changer si et étaient égales aux limites de  ; mais, à d’autres moments, nous aurions à prendre quelques précautions pour les valeurs extrêmes des indices à faire figurer dans les sommations. Ici, on pourrait n’étendre la première sommation que de 0 à et le second de 1 à .
  9. On suppose ici, pour quelques instants, le problème d’intégration possible.
  10. Avec notre définition, les peuvent donc avoir des points communs.
  11. Toutes les conditions du problème d’intégration pour les fonctions sont exprimées ; mais on pourrait craindre que cela ne suffise pas pour que les intégrales des fonctions quelconques, qui sont déterminées dès que les intégrales des fonctions le sont, satisfassent aussi à ces conditions. Ce qui suit montre que ces craintes ne sont pas justifiées.

    On pourrait le démontrer dès à présent, sans se servir de la valeur de l’intégrale des fonctions, et l’on pourrait aussi démontrer que, si l’on supprime les mots ou d’une infinité dénombrable dans 2′, on a un nouveau problème de la mesure qui correspond complètement au problème d’intégration posé avec les conditions 1, 2, 3, 4, 5 sans la condition 6.

  12. Ceci a été déjà exprimé par l’égalité .
  13. Intérieur étant pris au sens étroit qui exclut les extrémités.
  14. M. Borel a donné, dans sa Thèse et dans ses Leçons sur la théorie des fonctions, deux démonstrations de ce théorème. Ces démonstrations supposent essentiellement que l’ensemble des intervalles est dénombrable ; cela suffit dans quelques applications ; il y a cependant intérêt à démontrer le théorème du texte. Par exemple, pour les applications que j’ai faites, dans ma Thèse, du théorème de M. Borel, il était nécessaire qu’il soit démontré pour un ensemble d’intervalles ayant la puissance du continu.

    On a déduit du théorème, tel qu’il est énoncé dans le texte, une jolie démonstration de l’uniformité de la continuité.

    Soit une fonction continue en tous les points de , y compris et  ; chaque point de est, par définition, intérieur à un intervalle dans lequel l’oscillation de est inférieure à . À l’aide d’un nombre fini d’entre eux, on peut couvrir  ; soit la longueur du plus petit intervalle employé, dans tout intervalle de longueur l’oscillation de est au plus , car un tel intervalle empiète sur deux intervalles au plus ; la continuité est uniforme.

    Cette application du théorème complété fait bien comprendre, il me semble, tout l’usage qu’on en peut faire dans la théorie des fonctions. Depuis l’époque où paraissait la première édition de ce livre le théorème de M. Borel a été très étudié ; il a donné lieu à des attributions de priorité qui ne m’ont paru en rien justifiées comme j’ai eu l’occasion de le dire au cours d’une analyse de l’Ouvrage de M. et Mme Young, cité p. 37 (Bull. des Sc. math., 1907). Pour les rapports entre la démonstration du texte et la première démonstration de M. Borel, voir la Note finale.

  15. Si, comme je le suppose dans la démonstration, on admet que tout point de est intérieur à l’un des , on peut remplacer au moins égale par supérieure.
  16. C’est seulement pour ces ensembles que nous étudierons le problème de la mesure. Je ne sais pas si l’on peut définir, ni même s’il existe d’autres ensembles que les ensembles mesurables ; s’il en existe, ce qui est dit dans le texte ne suffit pas pour affirmer ni que le problème de la mesure est possible, ni qu’il est impossible pour ces ensembles. Au sujet de la possibilité et de la détermination du problème de la mesure pour tous les ensembles, voir le travail de M. Banach, cité page 106. Quant à la question de l’existence d’ensembles non mesurables, elle n’a guère fait de progrès depuis la première édition de ce livre. Toutefois cette existence est certaine pour ceux qui admettent un certain mode de raisonnement basé sur ce que l’on a appelé l’axiome de Zermelo. Par ce raisonnement, on arrive en effet à cette conclusion : il existe des ensembles non mesurables ; mais cette affirmation ne devrait pas être considérée comme contredite si l’on arrivait à montrer que jamais aucun homme ne pourra nommer un ensemble non mesurable !

    Sur ces questions, on pourra consulter la seconde édition des Leçons sur la théorie des fonctions de M. Émile Borel.

  17. La définition géométrique de la mesure permet non seulement de comparer deux ensembles égaux, mais aussi deux ensembles semblables. Le rapport des mesures de deux ensembles semblables de rapport est . C’est une condition qu’on aurait pu s’imposer a priori ; il lui correspond pour le problème d’intégration la condition S1
    (S1) .

    Les conditions S (p. 108) et S1 constituent ce qu’on peut appeler la condition de similitude, elles font connaître ce que devient une intégrale par les transformations

    ,.

    Peut-être pourrait-on remplacer la condition 6 par des conditions de cette nature.

  18. Si contient , on peut parler de leur différence . Cette différence est mesurable si et le sont, car elle est la partie commune à et .
  19. M. Borel avait indiqué (note 1, p. 48 des Leçons sur la théorie des fonctions) les principes qui nous ont guidés dans la théorie de la mesure. Lorsque l’on cherche à construire des ensembles auxquels l’application de ces principes permet d’attacher une mesure, on est conduit de suite à la classe des ensembles mesurables B. Cette classe a, jusqu’ici, suffi pratiquement ; le principal avantage qu’il y a à raisonner sur les ensembles mesurables et non sur les seuls ensembles mesurables B, ce n’est pas qu’on envisage ainsi une classe plus vaste d’ensembles, mais c’est qu’on part de la propriété capitale des ensembles auxquels on peut attacher une mesure et non d’un procédé de construction en perpétuel devenir. Aussi on a pu, comme on l’a vu plus haut, démontrer très simplement la compatibilité des conditions du problème de la mesure pour tous les ensembles mesurables, alors que cette démonstration n’avait pas été obtenue quand on s’était borné à la considération des ensembles mesurables B.

    Parmi les ensembles mesurables B, il semble que M. Borel n’ait tout d’abord considéré que ceux obtenus en effectuant seulement un nombre fini de fois les opérations I et II ; à la suite des rapprochements que j’ai faits entre les ensembles mesurables B et les fonctions considérées par M. Baire, l’usage s’est répandu d’adopter la définition du texte. Sur ces questions et sur l’existence d’ensembles non mesurables B, voir un Mémoire que j’ai publié dans le Journal de Mathématiques, en 1905, et le livre de M. de la Vallée Poussin, cité page 92. Pour les recherches les plus récentes, voir la collection des Fundamenta et un Mémoire de MM. Lusin et Sierpinski (Journ. de Math., 1923).

  20. Les qui donnent et ne contiennent pas nécessairement ceux qui ont donné et , tandis que les donnant et contiennent les relatifs à et .
  21. Pour le cas où il existerait des fonctions non mesurables, il faut ajouter qu’on s’astreint à la considération des seules fonctions mesurables.
  22. M. Osgood, dans un Mémoire de l’American Journal 1897 : On the non-uniform convergence, a démontré le cas particulier de ce théorème dans lequel et les sont continues. La méthode de M. Osgood est tout à fait différente de celle du texte.
  23. Je m’écarte ici du langage adopté dans ma Thèse où j’appelais fonctions sommables celles que j’appelle maintenant mesurables. Avec les conventions du texte, maintenant adoptées par tous, le mot sommable joue dans la théorie de l’intégrale le même rôle que le mot intégrable dans l’intégration riemannienne.

    Lorsqu’une fonction est mesurable sans être sommable, elle n’a pas d’intégrale ; pourtant, lorsqu’il s’agira d’une fonction toujours positive ou bornée inférieurement (ou toujours négative ou bornée supérieurement) il nous arrivera de dire qu’elle a une intégrale infinie, pour des raisons qui se comprennent de suite.

  24. Les fonctions sommables bornées, considérées ici, sont les mêmes que celles dont il a été question à la fin du Chapitre précédent, ceci apparaîtra au Chapitre IX.
  25. La réciproque est exacte, c’est-à-dire que si tend vers une limite déterminée quand on fait tendre et vers indépendamment et de façon arbitraire, est sommable et son intégrale est la limite considérée.
  26. C’est le cas d’intégration dit des suites ou séries monotones. Une série est dite monotone si la suite des sommes de cette série est monotone, c’est-à-dire jamais décroissante ou jamais croissante.
  27. Rendiconti del Circolo Matematico di Palermo, t. 23, 1907.
  28. Reale Ist. Lombardo ; Rendiconti, t. 39, 1906.
  29. On peut à cette occasion citer aussi des remarques ou des travaux de MM. Fubini, F. Riesz, Weyl, Egoroff, Lusin, Borel. Voir, par exemple, le travail que j’ai publié aux Annales sc. de l’École Normale en 1918.
  30. M. Young, par une extension nouvelle atteint d’ailleurs toutes les fonctions mesurables. Voir, par exemple, Proc. of the Lond. Math. Soc., 1910.

    Les lettres l et u qui figurent dans les notations de M. Young sont les initiales de lower et upper ; les fonctions et sont les fonctions semi-continues inférieurement et supérieurement de M. Baire (p. 19).

    On peut aussi utiliser ce mode de définition pour les fonctions non bornées et pour les fonctions définies dans des ensembles.

    Enfin on peut aussi, soit avec cette définition soit avec les autres, s’occuper du cas où l’intervalle ou ensemble de définition de la fonction n’est pas tout entier à distance finie, mais s’étend indéfiniment.

  31. Proc. Lond. Math. Soc., 1905, et Ph. Trans. London, 1905.
  32. Pour cette question et pour tout ce qui concerne la mesure des polygones, on consultera avec intérêt la Note D de la Géométrie élémentaire de M. Hadamard.
  33. On pourra pour cela établir une correspondance biunivoque et continue entre les points d’un carré et ceux du domaine , puis prendre pour courbe celle qui correspond à la courbe de Peano remplissant le carré. L’existence de cette correspondance est claire lorsque la courbe limitant le domaine est simple, lorsque c’est un polygone par exemple ; mais le cas général exige des raisonnements délicats. On pourra se reporter, par exemple, à la Thèse de M. Antoine (Journal de Math., 1921).

    Si l’on envisageait d’autres domaines que ceux qui sont limités par une courbe de Jordan, la correspondance pourrait ne plus exister. Pour ces domaines d’ailleurs il n’existe pas toujours de courbe, analogue à celle de M. Peano, qui les remplisse exactement. Une petite modification du raisonnement du texte serait nécessaire dans ce cas ; mais il est inutile de l’envisager ici.

  34. Ces définitions permettent de définir les fonctions mesurables de deux variables et les intégrales doubles relatives à ces fonctions. Je ne m’occuperai ni de ces questions ni de quelques autres qu’on peut y rattacher, comme l’intégration par parties et l’intégration sous le signe somme.
  35. Nous pouvons dire que le raisonnement du texte fournit une expression de la mesure superficielle à partir de mesures linéaires. Convenablement généralisées, ces considérations donnent la formule qui permet de remplacer le calcul d’une intégrale multiple par des calculs successifs d’intégrales simples.