Page:Henri Poincaré - Leçons sur la théorie de l'élasticité, 1892.djvu/157

Cette page n’a pas encore été corrigée

EXEMPLES DE VIBRATIONS 14"i En effet, pour une face perpendiculaire à ox, par exemple, dO de -T-^=-7—=^—2^*^f<"r a/j dx de -r - contient donc s en facteur. an Ces deuK problèmes, celui qui consiste à satisfaire aux équations de l'équilibre intérieur avec =oàlalimiteet dO celui aui exise -7 - = o à la limite, se retrouvent dans la ^ "" du théorie de la cbaleur. Si on considère un corps qui se refroidit et dont la surface est maintenue àO°, c'est le premier problème qu'il faut résoudre ; si on suppose la surface impénétrable à la chaleur, c'est le second. 64. "Vibrations d'une sphère. — L'\s cas où l'on sait résoudre le problème de l'élasticité pour la sphère ne sont pas beaucoup plus étendus que pour le prisme rectangle. Le cas le plus simple est celui où l'on suppose les vibra- lions dirigées suivant les rayons et le déplacement d'un point fonction seulement de sa distance r au centre de la sphère. Dans ce cas la vibration est longitudinale. En effet l'on a : l = x.f[r) r^ = ij.;{r) et par suite : 'idx -\ - - r^dij -- X,dz = f{i').rdr =: d-^ ^ est une fonction ne dépendant que de r et de t et dont les