Page:Galois - Œuvres mathématiques, Gauthier-Villars, 1897.djvu/25

Cette page a été validée par deux contributeurs.
VII

École a laissé des souvenirs ; sans aller aussi loin que le veut la légende, disons seulement que Galois refusa de répondre à une question, qu’il jugeait ridicule, sur la théorie arithmétique des logarithmes. On ne peut douter aussi qu’il ne se soit pas prêté à fournir sur ses travaux les explications que lui demandaient les mathématiciens avec qui il s’est trouvé en relations, explications que rendait nécessaires la rédaction rapide de ses Mémoires ; aussi comprend-on facilement que son mérite n’ait pas été reconnu de ses contemporains. Ce n’est pas sans peine que Liouville réussit à saisir l’enchaînement des idées de Galois, et il fallut encore de nombreux commentateurs pour combler les lacunes qui subsistaient dans plus d’une démonstration, et amener les théories du grand géomètre au degré de simplicité qu’elles sont susceptibles de revêtir aujourd’hui.

La théorie des équations doit à Lagrange, Gauss et Abel des progrès considérables, mais aucun d’eux n’arriva à mettre en évidence l’élément fondamental dont dépendent toutes les propriétés de l’équation ; cette gloire était réservée à Galois, qui montra qu’à chaque équation algébrique correspond un groupe de substitutions dans lequel se reflètent les caractères essentiels de l’équation. En Algèbre, la théorie des groupes avait fait auparavant l’objet de nombreuses recherches dues, pour la plupart, à Cauchy, qui avait introduit déjà certains éléments de classification ; les études de Galois sur la Théorie des équations lui montrèrent l’importance de la notion de sous-groupe invariant d’un groupe donné, et il fut ainsi conduit à partager les groupes en groupes simples et groupes composés, distinction fondamentale qui dépasse de beaucoup, en réalité, le domaine de l’Algèbre et s’étend au concept de groupes d’opérations dans son acception la plus étendue.

Les théories générales, pour prendre dans la Science un