La Science et l’Hypothèse/Chapitre 14

Flammarion (p. 282-289).

CHAPITRE XIV

La Fin de la Matière[1].



L’une des découvertes les plus étonnantes que les physiciens aient annoncées dans ces dernières années, c’est que la matière n’existe pas. Hâtons-nous de dire que cette découverte n’est pas encore définitive. L’attribut essentiel de la matière, c’est sa masse, son inertie. La masse est ce qui partout et toujours demeure constant, ce qui subsiste quand une transformation chimique a altéré toutes les qualités sensibles de la matière et semble en avoir fait un autre corps. Si donc on venait à démontrer que la masse, l’inertie de la matière ne lui appartiennent pas en réalité, que c’est un luxe d’emprunt dont elle se pare, que cette masse, la constante par excellence, est elle-même susceptible d’altération, on pourrait bien dire que la matière n’existe pas. Or, c’est là précisément ce qu’on annonce.

Les vitesses que nous avions pu observer jusqu’ici étaient bien faibles, puisque les corps célestes, qui laissent bien loin derrière eux tous nos automobiles, font à peine du 60 ou du 100 « kilomètres » à la seconde ; la lumière, il est vrai, va 3,000 fois plus vite, mais ce n’est pas une matière qui se déplace, c’est une perturbation qui chemine à travers une substance relativement immobile comme une vague à la surface de l’océan. Toutes les observations faites avec ces faibles vitesses montraient la constance de la masse, et personne ne s’était demandé s’il en serait encore de même avec des vitesses plus grandes.

Ce sont les infiniment petits qui ont battu le record de Mercure, la planète la plus rapide : je veux parler des corpuscules dont les mouvements produisent les rayons cathodiques et les rayons du radium. On sait que ces radiations sont dues à un véritable bombardement moléculaire. Les projectiles lancés dans ce bombardement sont chargés d’électricité négative, et on peut s’en assurer en recueillant cette électricité dans un cylindre de Faraday. À cause de leur charge ils sont déviés tant par un champ magnétique que par un champ électrique, et la comparaison de ces déviations peut nous faire connaître leur vitesse et le rapport de leur charge à leur masse.

Or, ces mesures nous ont révélé d’une part que leur vitesse est énorme, qu’elle est le dixième ou le tiers de celle de la lumière, mille fois celle des planètes, et d’autre part que leur charge est très considérable par rapport à leur masse. Chaque corpuscule en mouvement représente donc un courant électrique notable. Mais nous savons que les courants électriques présentent une sorte d’inertie spéciale appelée self-induction. Un courant une fois établi tend à se maintenir, et c’est pour cela que quand on veut rompre un courant, en coupant le conducteur qu’il traverse, on voit jaillir une étincelle au point de rupture. Ainsi le courant tend à conserver son intensité de même qu’un corps en mouvement tend à conserver sa vitesse. Donc notre corpuscule cathodique résistera aux causes qui pourraient altérer sa vitesse pour deux raisons : par son inertie proprement dite d’abord, et ensuite par sa self-induction, parce que toute altération de la vitesse serait en même temps une altération du courant correspondant. Le corpuscule — l’électron, comme on dit — aura donc deux inerties : l’inertie mécanique, et l’inertie électromagnétique.

MM. Abraham et Kaufmann, l’un calculateur, l’autre expérimentateur, ont uni leurs efforts pour déterminer la part de l’une et de l’autre. Ils ont été pour cela obligés d’admettre une hypothèse ; ils ont pensé que tous les électrons négatifs sont identiques, qu’ils portent la même charge, essentiellement constante, que les dissemblances que l’on constate entre eux proviennent uniquement des vitesses différentes dont ils sont animés. Quand la vitesse varie, la masse réelle, la masse mécanique, demeure constante, c’est pour ainsi dire sa définition même ; mais l’inertie électromagnétique, qui contribue à former la masse apparente, croît avec la vitesse suivant une certaine loi. Il doit donc y avoir une relation entre la vitesse et le rapport de la masse à la charge, quantités que l’on peut calculer, nous l’avons dit, en observant les déviations des rayons sous l’action d’un aimant ou d’un champ électrique ; et l’étude de cette relation permet de déterminer la part des deux inerties. Le résultat est tout à fait surprenant : la masse réelle est nulle. Il est vrai qu’il faut admettre l’hypothèse faite au début, mais la concordance de la courbe théorique et de la courbe expérimentale est assez grande pour rendre cette hypothèse fort vraisemblable.

Ainsi ces électrons négatifs n’ont pas de masse proprement dite ; s’ils semblent doués d’inertie c’est qu’ils ne sauraient changer de vitesse sans déranger l’éther. Leur inertie apparente n’est qu’un emprunt, elle n’est pas à eux, elle est à l’éther. Mais ces électrons négatifs ne sont pas toute la matière ; on pourrait donc admettre qu’en dehors d’eux il y a une vraie matière douée d’une inertie propre. Il y a certaines radiations — comme les rayons-canal de Goldstein, les rayons α du radium — qui sont dues aussi à une pluie de projectiles, mais de projectiles chargés positivement ; ces électrons positifs sont-ils eux aussi dépourvus de masse ? Il est impossible de le dire, parce qu’ils sont beaucoup plus lourds et beaucoup moins rapides que les électrons négatifs. Et alors deux hypothèses restent admissibles : ou bien les électrons sont plus lourds, parce qu’en dehors de leur inertie électromagnétique empruntée ils ont une inertie mécanique propre, et alors ce sont eux qui sont la vraie matière ; ou bien ils sont sans masse comme les autres, et s’ils nous paraissent plus lourds, c’est parce qu’ils sont plus petits. Je dis bien plus petits, quoique cela puisse paraître paradoxal ; car dans cette conception le corpuscule ne serait qu’un vide dans l’éther, seul réel, seul doué d’inertie.

Jusqu’ici la matière n’est pas trop compromise ; nous pouvons encore adopter la première hypothèse, ou même croire qu’en dehors des électrons positifs et négatifs, il y a des atomes neutres. Les récentes recherches de Lorentz vont nous enlever cette dernière ressource. Nous sommes entraînés dans le mouvement de la Terre, qui est très rapide ; les phénomènes optiques et électriques ne vont-ils pas être altérés par cette translation ? On l’a cru longtemps, et on a supposé que les observations décèleraient des différences, suivant l’orientation des appareils par rapport au mouvement de la Terre. Il n’en a rien été, et les mesures les plus délicates n’ont rien montré de semblable. Et en cela les expériences justifiaient une répugnance commune à tous les physiciens ; si on avait trouvé quelque chose en effet, on aurait pu connaître non seulement le mouvement relatif de la Terre par rapport au Soleil, mais son mouvement absolu dans l’éther. Or, beaucoup de personnes ont peine à croire qu’aucune expérience puisse donner autre chose qu’un mouvement relatif ; elles accepteraient plus volontiers de croire que la matière n’a pas de masse.

On ne fut donc pas trop étonné des résultats négatifs obtenus ; ils étaient contraires aux théories enseignées, mais ils flattaient un instinct profond, antérieur à toutes ces théories. Encore fallait-il modifier ces théories en conséquence, pour les mettre en harmonie avec les faits. C’est ce qu’a fait Fitzgerald, par une hypothèse surprenante : il admet que tous les corps subissent une contraction d’un cent-millionième environ dans la direction du mouvement de la Terre. Une sphère parfaite devient un ellipsoïde aplati, et si on la fait tourner, elle se déforme de façon que le petit axe de l’ellipsoïde reste toujours parallèle à la vitesse de la Terre. Comme les instruments de mesure subissent les mêmes déformations que les objets à mesurer, on ne s’aperçoit de rien, à moins qu’on ne s’avise de déterminer le temps que met la lumière pour parcourir la longueur de l’objet.

Cette hypothèse rend compte des faits observés. Mais ce n’est pas assez ; on fera un jour des observations plus précises encore ; les résultats seront-ils cette fois positifs ; nous mettront-ils en mesure de déterminer le mouvement absolu de la Terre ? Lorentz ne l’a pas pensé ; il croit que cette détermination sera toujours impossible ; l’instinct commun de tous les physiciens, les insuccès éprouvés jusqu’ici le lui garantissent suffisamment. Considérons donc cette impossibilité comme une loi générale de la nature ; admettons-la comme postulat. Quelles en seront les conséquences ? C’est ce qu’a cherché Lorentz, et il a trouvé que tous les atomes, tous les électrons positifs ou négatifs, devaient avoir une inertie variable avec la vitesse, et précisément d’après les mêmes lois. Ainsi tout atome matériel serait formé d’électrons positifs, petits et lourds, et d’électrons négatifs, gros et légers, et si la matière sensible ne nous paraît pas électrisée, c’est que les deux sortes d’électrons sont à peu près en nombre égal. Les uns et les autres sont dépourvus de masse et n’ont qu’une inertie d’emprunt. Dans ce système il n’y a pas de vraie matière, il n’y a plus que des trous dans l’éther.

Pour M. Langevin, la matière serait de l’éther liquéfié, et ayant perdu ses propriétés ; quand la matière se déplacerait, ce ne serait pas cette masse liquéfiée qui cheminerait à travers l’éther ; mais la liquéfaction s’étendrait de proche en proche à de nouvelles portions de l’éther, pendant qu’en arrière les parties d’abord liquéfiées reprendraient leur état primitif. La matière en se mouvant ne conserverait pas son identité.

Voilà où en était la question il y a quelque temps ; mais voici que M. Kaufmann annonce de nouvelles expériences. L’électron négatif, dont la vitesse est énorme, devrait éprouver la contraction de Fitzgerald, et la relation entre la vitesse et la masse s’en trouverait modifiée ; or, les expériences récentes ne confirment pas cette prévision ; tout s’écroulerait alors, et la matière reprendrait ses droits à l’existence. Mais les expériences sont délicates, et une conclusion définitive serait aujourd’hui prématurée.

  1. Voir l’Évolution de la Matière. par Gustave Le Bon.